Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cdeqab Structured version   Visualization version   GIF version

Theorem bj-cdeqab 32787
Description: Remove dependency on ax-13 2246 from cdeqab 3425. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-cdeqab.1 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-cdeqab CondEq(𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem bj-cdeqab
StepHypRef Expression
1 bj-cdeqab.1 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
21cdeqri 3421 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
32bj-abbidv 32779 . 2 (𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
43cdeqi 3420 1 CondEq(𝑥 = 𝑦 → {𝑧𝜑} = {𝑧𝜓})
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  {cab 2608  CondEqwcdeq 3418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-cdeq 3419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator