![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cmnssmnd | Structured version Visualization version GIF version |
Description: Commutative monoids are monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cmnssmnd | ⊢ CMnd ⊆ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cmn 18195 | . 2 ⊢ CMnd = {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∀𝑧 ∈ (Base‘𝑥)(𝑦(+g‘𝑥)𝑧) = (𝑧(+g‘𝑥)𝑦)} | |
2 | ssrab2 3687 | . 2 ⊢ {𝑥 ∈ Mnd ∣ ∀𝑦 ∈ (Base‘𝑥)∀𝑧 ∈ (Base‘𝑥)(𝑦(+g‘𝑥)𝑧) = (𝑧(+g‘𝑥)𝑦)} ⊆ Mnd | |
3 | 1, 2 | eqsstri 3635 | 1 ⊢ CMnd ⊆ Mnd |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∀wral 2912 {crab 2916 ⊆ wss 3574 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 Mndcmnd 17294 CMndccmn 18193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-in 3581 df-ss 3588 df-cmn 18195 |
This theorem is referenced by: bj-cmnssmndel 33137 |
Copyright terms: Public domain | W3C validator |