![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-denotes | Structured version Visualization version GIF version |
Description: This would be the
justification for the definition of the unary
predicate "E!" by ⊢ ( E! 𝐴 ↔ ∃𝑥𝑥 = 𝐴) which could be
interpreted as "𝐴 exists" or "𝐴
denotes". It is interesting
that this justification can be proved without ax-ext 2602 nor df-cleq 2615
(but of course using df-clab 2609 and df-clel 2618). Once extensionality is
postulated, then isset 3207 will prove that "existing" (as a
set) is
equivalent to being a member of a class.
Note that there is no dv condition on 𝑥, 𝑦 but the theorem does not depend on ax-13 2246. Actually, the proof depends only on ax-1--7 and sp 2053. The symbol "E!" was chosen to be reminiscent of the analogous predicate in (inclusive or non-inclusive) free logic, which deals with the possibility of non-existent objects. This analogy should not be taken too far, since here there are no equality axioms for classes: they are derived from ax-ext 2602 (e.g., eqid 2622). In particular, one cannot even prove ⊢ ∃𝑥𝑥 = 𝐴 ⇒ ⊢ 𝐴 = 𝐴. With ax-ext 2602, the present theorem is obvious from cbvexv 2275 and eqeq1 2626 (in free logic, the same proof holds since one has equality axioms for terms). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-denotes | ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝑧 = 𝑧 → 𝑧 = 𝑧) | |
2 | 1 | bj-vexwv 32857 | . . . . 5 ⊢ 𝑥 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)} |
3 | 2 | biantru 526 | . . . 4 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)})) |
4 | 3 | exbii 1774 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)})) |
5 | df-clel 2618 | . . 3 ⊢ (𝐴 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)})) | |
6 | df-clel 2618 | . . 3 ⊢ (𝐴 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)})) | |
7 | 4, 5, 6 | 3bitr2i 288 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)})) |
8 | 1 | bj-vexwv 32857 | . . . . 5 ⊢ 𝑦 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)} |
9 | 8 | biantru 526 | . . . 4 ⊢ (𝑦 = 𝐴 ↔ (𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)})) |
10 | 9 | bicomi 214 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)}) ↔ 𝑦 = 𝐴) |
11 | 10 | exbii 1774 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ {𝑧 ∣ (𝑧 = 𝑧 → 𝑧 = 𝑧)}) ↔ ∃𝑦 𝑦 = 𝐴) |
12 | 7, 11 | bitri 264 | 1 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 df-clab 2609 df-clel 2618 |
This theorem is referenced by: bj-issetwt 32859 bj-elisset 32862 bj-vtoclg1f1 32910 |
Copyright terms: Public domain | W3C validator |