| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfsb2 | Structured version Visualization version GIF version | ||
| Description: Alternate (dual) definition of substitution df-sb 1881 not using dummy variables. (Contributed by BJ, 19-Mar-2021.) |
| Ref | Expression |
|---|---|
| bj-dfsb2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 1881 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 2 | bj-sbsb 32824 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) | |
| 3 | 1, 2 | bitri 264 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∀wal 1481 ∃wex 1704 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |