| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfssb2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of df-ssb 32620. Note that the use of a dummy variable in the definition df-ssb 32620 allows to use bj-sb56 32639 instead of equs45f 2350 and hence to avoid dependency on ax-13 2246 and to use ax-12 2047 only through bj-ax12 32634. Compare dfsb7 2455. (Contributed by BJ, 25-Dec-2020.) |
| Ref | Expression |
|---|---|
| bj-dfssb2 | ⊢ ([𝑡/𝑥]b𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ssb 32620 | . 2 ⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | bj-sb56 32639 | . 2 ⊢ (∃𝑦(𝑦 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 3 | bj-sb56 32639 | . . . . 5 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 4 | 3 | bicomi 214 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 5 | 4 | anbi2i 730 | . . 3 ⊢ ((𝑦 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 6 | 5 | exbii 1774 | . 2 ⊢ (∃𝑦(𝑦 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 7 | 1, 2, 6 | 3bitr2i 288 | 1 ⊢ ([𝑡/𝑥]b𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 [wssb 32619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-ssb 32620 |
| This theorem is referenced by: bj-ssbn 32641 |
| Copyright terms: Public domain | W3C validator |