![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sb56 | Structured version Visualization version GIF version |
Description: Proof of sb56 2150 from Tarski, ax-10 2019 (modal5) and bj-ax12 32634. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-sb56 | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ax12 32634 | . . . 4 ⊢ ∀𝑥(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | pm3.31 461 | . . . . 5 ⊢ ((𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
3 | 2 | aleximi 1759 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥∀𝑥(𝑥 = 𝑦 → 𝜑))) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) |
5 | bj-modal5e 32636 | . . 3 ⊢ (∃𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
7 | equs4v 1930 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
8 | 6, 7 | impbii 199 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
This theorem is referenced by: bj-dfssb2 32640 |
Copyright terms: Public domain | W3C validator |