Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-disj2r Structured version   Visualization version   GIF version

Theorem bj-disj2r 33013
Description: Relative version of ssdifin0 4050, allowing a biconditional, and of disj2 4024. This proof does not rely, even indirectly, on ssdifin0 4050 nor disj2 4024. (Contributed by BJ, 11-Nov-2021.)
Assertion
Ref Expression
bj-disj2r ((𝐴𝑉) ⊆ (𝑉𝐵) ↔ ((𝐴𝐵) ∩ 𝑉) = ∅)

Proof of Theorem bj-disj2r
StepHypRef Expression
1 df-ss 3588 . . 3 ((𝐴𝑉) ⊆ (𝑉𝐵) ↔ ((𝐴𝑉) ∩ (𝑉𝐵)) = (𝐴𝑉))
2 indif2 3870 . . . . 5 ((𝐴𝑉) ∩ (𝑉𝐵)) = (((𝐴𝑉) ∩ 𝑉) ∖ 𝐵)
3 inss1 3833 . . . . . . 7 ((𝐴𝑉) ∩ 𝑉) ⊆ (𝐴𝑉)
4 ssid 3624 . . . . . . . 8 (𝐴𝑉) ⊆ (𝐴𝑉)
5 inss2 3834 . . . . . . . 8 (𝐴𝑉) ⊆ 𝑉
64, 5ssini 3836 . . . . . . 7 (𝐴𝑉) ⊆ ((𝐴𝑉) ∩ 𝑉)
73, 6eqssi 3619 . . . . . 6 ((𝐴𝑉) ∩ 𝑉) = (𝐴𝑉)
87difeq1i 3724 . . . . 5 (((𝐴𝑉) ∩ 𝑉) ∖ 𝐵) = ((𝐴𝑉) ∖ 𝐵)
92, 8eqtri 2644 . . . 4 ((𝐴𝑉) ∩ (𝑉𝐵)) = ((𝐴𝑉) ∖ 𝐵)
109eqeq1i 2627 . . 3 (((𝐴𝑉) ∩ (𝑉𝐵)) = (𝐴𝑉) ↔ ((𝐴𝑉) ∖ 𝐵) = (𝐴𝑉))
11 eqcom 2629 . . 3 (((𝐴𝑉) ∖ 𝐵) = (𝐴𝑉) ↔ (𝐴𝑉) = ((𝐴𝑉) ∖ 𝐵))
121, 10, 113bitri 286 . 2 ((𝐴𝑉) ⊆ (𝑉𝐵) ↔ (𝐴𝑉) = ((𝐴𝑉) ∖ 𝐵))
13 disj3 4021 . 2 (((𝐴𝑉) ∩ 𝐵) = ∅ ↔ (𝐴𝑉) = ((𝐴𝑉) ∖ 𝐵))
14 in32 3825 . . 3 ((𝐴𝑉) ∩ 𝐵) = ((𝐴𝐵) ∩ 𝑉)
1514eqeq1i 2627 . 2 (((𝐴𝑉) ∩ 𝐵) = ∅ ↔ ((𝐴𝐵) ∩ 𝑉) = ∅)
1612, 13, 153bitr2i 288 1 ((𝐴𝑉) ⊆ (𝑉𝐵) ↔ ((𝐴𝐵) ∩ 𝑉) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  cdif 3571  cin 3573  wss 3574  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  bj-sscon  33014
  Copyright terms: Public domain W3C validator