Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsal1ti Structured version   Visualization version   GIF version

Theorem bj-equsal1ti 32810
Description: Inference associated with bj-equsal1t 32809. (Contributed by BJ, 30-Sep-2018.)
Hypothesis
Ref Expression
bj-equsal1ti.1 𝑥𝜑
Assertion
Ref Expression
bj-equsal1ti (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)

Proof of Theorem bj-equsal1ti
StepHypRef Expression
1 bj-equsal1ti.1 . 2 𝑥𝜑
2 bj-equsal1t 32809 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
31, 2ax-mp 5 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  bj-equsal1  32811  bj-equsal2  32812
  Copyright terms: Public domain W3C validator