Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoorec Structured version   Visualization version   GIF version

Theorem bj-ismoorec 33060
Description: Characterization of Moore collections. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-ismoorec (𝐴Moore ↔ (𝐴 ∈ V ∧ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-ismoorec
StepHypRef Expression
1 elex 3212 . 2 (𝐴Moore𝐴 ∈ V)
2 bj-ismoore 33059 . 2 (𝐴 ∈ V → (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
31, 2biadan2 674 1 (𝐴Moore ↔ (𝐴 ∈ V ∧ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wcel 1990  wral 2912  Vcvv 3200  cin 3573  𝒫 cpw 4158   cuni 4436   cint 4475  Moorecmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-bj-moore 33058
This theorem is referenced by:  bj-ismoored  33062
  Copyright terms: Public domain W3C validator