| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfs1t2 | Structured version Visualization version GIF version | ||
| Description: A theorem close to a closed form of nfs1 2365. (Contributed by BJ, 2-May-2019.) |
| Ref | Expression |
|---|---|
| bj-nfs1t2 | ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5r 2064 | . . 3 ⊢ (Ⅎ𝑦𝜑 → (𝜑 → ∀𝑦𝜑)) | |
| 2 | 1 | alimi 1739 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑥(𝜑 → ∀𝑦𝜑)) |
| 3 | bj-nfs1t 32714 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 Ⅎwnf 1708 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: bj-nfs1 32716 |
| Copyright terms: Public domain | W3C validator |