![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ralcom4 | Structured version Visualization version GIF version |
Description: Remove from ralcom4 3224 dependency on ax-ext 2602 and ax-13 2246 (and on df-or 385, df-an 386, df-tru 1486, df-sb 1881, df-clab 2609, df-cleq 2615, df-clel 2618, df-nfc 2753, df-v 3202). This proof uses only df-ral 2917 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1868 | . . . . 5 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
2 | 1 | bicomi 214 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦𝜑) ↔ ∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) |
3 | 2 | albii 1747 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑)) |
4 | alcom 2037 | . . 3 ⊢ (∀𝑥∀𝑦(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
5 | 3, 4 | bitri 264 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑) ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
6 | df-ral 2917 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦𝜑)) | |
7 | df-ral 2917 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
8 | 7 | albii 1747 | . 2 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
9 | 5, 6, 8 | 3bitr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∈ wcel 1990 ∀wral 2912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-11 2034 |
This theorem depends on definitions: df-bi 197 df-ex 1705 df-ral 2917 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |