Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ralcom4 Structured version   Visualization version   GIF version

Theorem bj-ralcom4 32868
Description: Remove from ralcom4 3224 dependency on ax-ext 2602 and ax-13 2246 (and on df-or 385, df-an 386, df-tru 1486, df-sb 1881, df-clab 2609, df-cleq 2615, df-clel 2618, df-nfc 2753, df-v 3202). This proof uses only df-ral 2917 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ralcom4 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem bj-ralcom4
StepHypRef Expression
1 19.21v 1868 . . . . 5 (∀𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∀𝑦𝜑))
21bicomi 214 . . . 4 ((𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑦(𝑥𝐴𝜑))
32albii 1747 . . 3 (∀𝑥(𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑥𝑦(𝑥𝐴𝜑))
4 alcom 2037 . . 3 (∀𝑥𝑦(𝑥𝐴𝜑) ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
53, 4bitri 264 . 2 (∀𝑥(𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
6 df-ral 2917 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
7 df-ral 2917 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
87albii 1747 . 2 (∀𝑦𝑥𝐴 𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
95, 6, 83bitr4i 292 1 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wcel 1990  wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-11 2034
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-ral 2917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator