| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rexcom4 | Structured version Visualization version GIF version | ||
| Description: Remove from rexcom4 3225 dependency on ax-ext 2602 and ax-13 2246 (and on df-or 385, df-tru 1486, df-sb 1881, df-clab 2609, df-cleq 2615, df-clel 2618, df-nfc 2753, df-v 3202). This proof uses only df-rex 2918 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2918 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 2 | 19.42v 1918 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
| 3 | 2 | bicomi 214 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | 3 | exbii 1774 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 5 | excom 2042 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 2918 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 7 | 6 | bicomi 214 | . . . . 5 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 8 | 7 | exbii 1774 | . . . 4 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| 9 | 5, 8 | bitri 264 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| 10 | 4, 9 | bitri 264 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑) ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| 11 | 1, 10 | bitri 264 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∃wex 1704 ∈ wcel 1990 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-11 2034 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-rex 2918 |
| This theorem is referenced by: bj-rexcom4a 32870 |
| Copyright terms: Public domain | W3C validator |