Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rexcom4a Structured version   Visualization version   GIF version

Theorem bj-rexcom4a 32870
Description: Remove from rexcom4a 3226 dependency on ax-ext 2602 and ax-13 2246 (and on df-or 385, df-sb 1881, df-clab 2609, df-cleq 2615, df-clel 2618, df-nfc 2753, df-v 3202). This proof uses only df-rex 2918 on top of first-order logic. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-rexcom4a (∃𝑥𝑦𝐴 (𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem bj-rexcom4a
StepHypRef Expression
1 bj-rexcom4 32869 . 2 (∃𝑦𝐴𝑥(𝜑𝜓) ↔ ∃𝑥𝑦𝐴 (𝜑𝜓))
2 19.42v 1918 . . 3 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
32rexbii 3041 . 2 (∃𝑦𝐴𝑥(𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
41, 3bitr3i 266 1 (∃𝑥𝑦𝐴 (𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wex 1704  wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-11 2034
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-rex 2918
This theorem is referenced by:  bj-rexcom4bv  32871  bj-rexcom4b  32872
  Copyright terms: Public domain W3C validator