![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rexcom4a | Structured version Visualization version GIF version |
Description: Remove from rexcom4a 3226 dependency on ax-ext 2602 and ax-13 2246 (and on df-or 385, df-sb 1881, df-clab 2609, df-cleq 2615, df-clel 2618, df-nfc 2753, df-v 3202). This proof uses only df-rex 2918 on top of first-order logic. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-rexcom4a | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rexcom4 32869 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
2 | 19.42v 1918 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | |
3 | 2 | rexbii 3041 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
4 | 1, 3 | bitr3i 266 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∃wex 1704 ∃wrex 2913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-11 2034 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-rex 2918 |
This theorem is referenced by: bj-rexcom4bv 32871 bj-rexcom4b 32872 |
Copyright terms: Public domain | W3C validator |