| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rrvecssvec | Structured version Visualization version GIF version | ||
| Description: Real vector spaces are vector spaces. (Contributed by BJ, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-rrvecssvec | ⊢ ℝ-Vec ⊆ LVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-rrvec 33149 | . 2 ⊢ ℝ-Vec = {𝑥 ∈ LVec ∣ (Scalar‘𝑥) = ℝfld} | |
| 2 | ssrab2 3687 | . 2 ⊢ {𝑥 ∈ LVec ∣ (Scalar‘𝑥) = ℝfld} ⊆ LVec | |
| 3 | 1, 2 | eqsstri 3635 | 1 ⊢ ℝ-Vec ⊆ LVec |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 {crab 2916 ⊆ wss 3574 ‘cfv 5888 Scalarcsca 15944 LVecclvec 19102 ℝfldcrefld 19950 ℝ-Veccrrvec 33148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-in 3581 df-ss 3588 df-bj-rrvec 33149 |
| This theorem is referenced by: bj-rrvecssvecel 33151 bj-rrvecsscmn 33152 |
| Copyright terms: Public domain | W3C validator |