| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spimev | Structured version Visualization version GIF version | ||
| Description: Version of spime 2256 with a dv condition, which does not require ax-13 2246. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-spimev.1 | ⊢ Ⅎ𝑥𝜑 |
| bj-spimev.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-spimev | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-spimev.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | bj-spimev.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | bj-spimedv 32719 | . 2 ⊢ (⊤ → (𝜑 → ∃𝑥𝜓)) |
| 5 | 4 | trud 1493 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1484 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: bj-spimevv 32722 |
| Copyright terms: Public domain | W3C validator |