| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ssbbii | Structured version Visualization version GIF version | ||
| Description: Biconditional property for substitution. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| bj-ssbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bj-ssbbii | ⊢ ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ssbbi 32622 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓)) | |
| 2 | bj-ssbbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1724 | 1 ⊢ ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 [wssb 32619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-ssb 32620 |
| This theorem is referenced by: bj-ssbssblem 32649 bj-ssbcom3lem 32650 |
| Copyright terms: Public domain | W3C validator |