Proof of Theorem bj-ssbcom3lem
| Step | Hyp | Ref
| Expression |
| 1 | | equequ2 1953 |
. . . . . . 7
⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) |
| 2 | 1 | imbi1d 331 |
. . . . . 6
⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
| 3 | 2 | pm5.74i 260 |
. . . . 5
⊢ ((𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → (𝑥 = 𝑡 → 𝜑))) |
| 4 | 3 | albii 1747 |
. . . 4
⊢
(∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑡 → 𝜑))) |
| 5 | | 19.21v 1868 |
. . . 4
⊢
(∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 6 | | 19.21v 1868 |
. . . 4
⊢
(∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑡 → 𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 7 | 4, 5, 6 | 3bitr3i 290 |
. . 3
⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 8 | 7 | albii 1747 |
. 2
⊢
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 9 | | bj-ssb1 32633 |
. . . 4
⊢ ([𝑦/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 10 | 9 | bj-ssbbii 32624 |
. . 3
⊢ ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑦]b∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 11 | | bj-ssb1 32633 |
. . 3
⊢ ([𝑡/𝑦]b∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 12 | 10, 11 | bitri 264 |
. 2
⊢ ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 13 | | bj-ssb1 32633 |
. . . 4
⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 14 | 13 | bj-ssbbii 32624 |
. . 3
⊢ ([𝑡/𝑦]b[𝑡/𝑥]b𝜑 ↔ [𝑡/𝑦]b∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 15 | | bj-ssb1 32633 |
. . 3
⊢ ([𝑡/𝑦]b∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 16 | 14, 15 | bitri 264 |
. 2
⊢ ([𝑡/𝑦]b[𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 17 | 8, 12, 16 | 3bitr4i 292 |
1
⊢ ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑦]b[𝑡/𝑥]b𝜑) |