| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ssbim | Structured version Visualization version GIF version | ||
| Description: Distribute substitution over implication, closed form. Specialization of implication. Uses only ax-1--5. Compare spsbim 2394. (Contributed by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| bj-ssbim | ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡/𝑥]b𝜑 → [𝑡/𝑥]b𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2 58 | . . . . 5 ⊢ ((𝜑 → 𝜓) → ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓))) | |
| 2 | 1 | al2imi 1743 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
| 3 | 2 | imim2d 57 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) |
| 4 | 3 | alimdv 1845 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) |
| 5 | df-ssb 32620 | . 2 ⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 6 | df-ssb 32620 | . 2 ⊢ ([𝑡/𝑥]b𝜓 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) | |
| 7 | 4, 5, 6 | 3imtr4g 285 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡/𝑥]b𝜑 → [𝑡/𝑥]b𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 [wssb 32619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-ssb 32620 |
| This theorem is referenced by: bj-ssbbi 32622 bj-ssbimi 32623 |
| Copyright terms: Public domain | W3C validator |