| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsbim | Structured version Visualization version GIF version | ||
| Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| spsbim | ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 2353 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | |
| 2 | sbi1 2392 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: mo3 2507 bj-hbsb3t 32712 wl-mo3t 33358 pm11.59 38591 sbiota1 38635 |
| Copyright terms: Public domain | W3C validator |