Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1015 Structured version   Visualization version   GIF version

Theorem bnj1015 31031
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1015.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1015.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1015.13 𝐷 = (ω ∖ {∅})
bnj1015.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1015.15 𝐺𝑉
bnj1015.16 𝐽𝑉
Assertion
Ref Expression
bnj1015 ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦,𝑓,𝑛)   𝐺(𝑦,𝑓,𝑖,𝑛)   𝐽(𝑦,𝑓,𝑖,𝑛)   𝑉(𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj1015
Dummy variables 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1015.16 . . 3 𝐽𝑉
21elexi 3213 . 2 𝐽 ∈ V
3 eleq1 2689 . . . 4 (𝑗 = 𝐽 → (𝑗 ∈ dom 𝐺𝐽 ∈ dom 𝐺))
43anbi2d 740 . . 3 (𝑗 = 𝐽 → ((𝐺𝐵𝑗 ∈ dom 𝐺) ↔ (𝐺𝐵𝐽 ∈ dom 𝐺)))
5 fveq2 6191 . . . 4 (𝑗 = 𝐽 → (𝐺𝑗) = (𝐺𝐽))
65sseq1d 3632 . . 3 (𝑗 = 𝐽 → ((𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅)))
74, 6imbi12d 334 . 2 (𝑗 = 𝐽 → (((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))))
8 bnj1015.15 . . . 4 𝐺𝑉
98elexi 3213 . . 3 𝐺 ∈ V
10 eleq1 2689 . . . . 5 (𝑔 = 𝐺 → (𝑔𝐵𝐺𝐵))
11 dmeq 5324 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
1211eleq2d 2687 . . . . 5 (𝑔 = 𝐺 → (𝑗 ∈ dom 𝑔𝑗 ∈ dom 𝐺))
1310, 12anbi12d 747 . . . 4 (𝑔 = 𝐺 → ((𝑔𝐵𝑗 ∈ dom 𝑔) ↔ (𝐺𝐵𝑗 ∈ dom 𝐺)))
14 fveq1 6190 . . . . 5 (𝑔 = 𝐺 → (𝑔𝑗) = (𝐺𝑗))
1514sseq1d 3632 . . . 4 (𝑔 = 𝐺 → ((𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)))
1613, 15imbi12d 334 . . 3 (𝑔 = 𝐺 → (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))))
17 bnj1015.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
18 bnj1015.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
19 bnj1015.13 . . . 4 𝐷 = (ω ∖ {∅})
20 bnj1015.14 . . . 4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
2117, 18, 19, 20bnj1014 31030 . . 3 ((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
229, 16, 21vtocl 3259 . 2 ((𝐺𝐵𝑗 ∈ dom 𝐺) → (𝐺𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
232, 7, 22vtocl 3259 1 ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  cdif 3571  wss 3574  c0 3915  {csn 4177   ciun 4520  dom cdm 5114  suc csuc 5725   Fn wfn 5883  cfv 5888  ωcom 7065   predc-bnj14 30754   trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-bnj18 30761
This theorem is referenced by:  bnj1018  31032
  Copyright terms: Public domain W3C validator