| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1039 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1039.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj1039.2 | ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) |
| Ref | Expression |
|---|---|
| bnj1039 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1039.2 | . 2 ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) | |
| 2 | vex 3203 | . . 3 ⊢ 𝑗 ∈ V | |
| 3 | bnj1039.1 | . . . . 5 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 4 | nfra1 2941 | . . . . 5 ⊢ Ⅎ𝑖∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
| 5 | 3, 4 | nfxfr 1779 | . . . 4 ⊢ Ⅎ𝑖𝜓 |
| 6 | 5 | sbcgf 3501 | . . 3 ⊢ (𝑗 ∈ V → ([𝑗 / 𝑖]𝜓 ↔ 𝜓)) |
| 7 | 2, 6 | ax-mp 5 | . 2 ⊢ ([𝑗 / 𝑖]𝜓 ↔ 𝜓) |
| 8 | 1, 7, 3 | 3bitri 286 | 1 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 [wsbc 3435 ∪ ciun 4520 suc csuc 5725 ‘cfv 5888 ωcom 7065 predc-bnj14 30754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: bnj1128 31058 |
| Copyright terms: Public domain | W3C validator |