![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1138 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1138.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
bnj1138 | ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1138.1 | . . 3 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
2 | 1 | eleq2i 2693 | . 2 ⊢ (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ (𝐵 ∪ 𝐶)) |
3 | elun 3753 | . 2 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | |
4 | 2, 3 | bitri 264 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 383 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 |
This theorem is referenced by: bnj1424 30909 bnj1408 31104 bnj1417 31109 |
Copyright terms: Public domain | W3C validator |