| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1198 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1198.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| bnj1198.2 | ⊢ (𝜓′ ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bnj1198 | ⊢ (𝜑 → ∃𝑥𝜓′) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1198.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | bnj1198.2 | . . 3 ⊢ (𝜓′ ↔ 𝜓) | |
| 3 | 2 | exbii 1774 | . 2 ⊢ (∃𝑥𝜓′ ↔ ∃𝑥𝜓) |
| 4 | 1, 3 | sylibr 224 | 1 ⊢ (𝜑 → ∃𝑥𝜓′) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: bnj1209 30867 bnj1275 30884 bnj1340 30894 bnj1345 30895 bnj605 30977 bnj607 30986 bnj906 31000 bnj908 31001 bnj1189 31077 bnj1450 31118 bnj1312 31126 |
| Copyright terms: Public domain | W3C validator |