Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1198 Structured version   Visualization version   GIF version

Theorem bnj1198 30866
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1198.1 (𝜑 → ∃𝑥𝜓)
bnj1198.2 (𝜓′𝜓)
Assertion
Ref Expression
bnj1198 (𝜑 → ∃𝑥𝜓′)

Proof of Theorem bnj1198
StepHypRef Expression
1 bnj1198.1 . 2 (𝜑 → ∃𝑥𝜓)
2 bnj1198.2 . . 3 (𝜓′𝜓)
32exbii 1774 . 2 (∃𝑥𝜓′ ↔ ∃𝑥𝜓)
41, 3sylibr 224 1 (𝜑 → ∃𝑥𝜓′)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  bnj1209  30867  bnj1275  30884  bnj1340  30894  bnj1345  30895  bnj605  30977  bnj607  30986  bnj906  31000  bnj908  31001  bnj1189  31077  bnj1450  31118  bnj1312  31126
  Copyright terms: Public domain W3C validator