Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1189 Structured version   Visualization version   GIF version

Theorem bnj1189 31077
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1189.1 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
bnj1189.2 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
bnj1189.3 (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
Assertion
Ref Expression
bnj1189 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem bnj1189
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1189.1 . . . . . 6 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
2 n0 3931 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
32biimpi 206 . . . . . 6 (𝐵 ≠ ∅ → ∃𝑥 𝑥𝐵)
41, 3bnj837 30831 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐵)
54ancli 574 . . . 4 (𝜑 → (𝜑 ∧ ∃𝑥 𝑥𝐵))
6 19.42v 1918 . . . 4 (∃𝑥(𝜑𝑥𝐵) ↔ (𝜑 ∧ ∃𝑥 𝑥𝐵))
75, 6sylibr 224 . . 3 (𝜑 → ∃𝑥(𝜑𝑥𝐵))
8 3simpc 1060 . . . . . . . . 9 ((𝜑𝑥𝐵𝜒) → (𝑥𝐵𝜒))
9 bnj1189.3 . . . . . . . . . 10 (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
109anbi2i 730 . . . . . . . . 9 ((𝑥𝐵𝜒) ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
118, 10sylib 208 . . . . . . . 8 ((𝜑𝑥𝐵𝜒) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
12 19.8a 2052 . . . . . . . 8 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1311, 12syl 17 . . . . . . 7 ((𝜑𝑥𝐵𝜒) → ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
14 df-rex 2918 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1513, 14sylibr 224 . . . . . 6 ((𝜑𝑥𝐵𝜒) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
16153comr 1273 . . . . 5 ((𝜒𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
17163expib 1268 . . . 4 (𝜒 → ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
18 simp1 1061 . . . . . . . . . 10 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → 𝜑)
19 simp2 1062 . . . . . . . . . . . 12 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → 𝑥𝐵)
20 rexnal 2995 . . . . . . . . . . . . . . . . . 18 (∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥 ↔ ¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
2120bicomi 214 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
2221, 9xchnxbir 323 . . . . . . . . . . . . . . . 16 𝜒 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
23 notnotb 304 . . . . . . . . . . . . . . . . 17 (𝑦𝑅𝑥 ↔ ¬ ¬ 𝑦𝑅𝑥)
2423rexbii 3041 . . . . . . . . . . . . . . . 16 (∃𝑦𝐵 𝑦𝑅𝑥 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
2522, 24bitr4i 267 . . . . . . . . . . . . . . 15 𝜒 ↔ ∃𝑦𝐵 𝑦𝑅𝑥)
2625biimpi 206 . . . . . . . . . . . . . 14 𝜒 → ∃𝑦𝐵 𝑦𝑅𝑥)
2726bnj1196 30865 . . . . . . . . . . . . 13 𝜒 → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
28273ad2ant3 1084 . . . . . . . . . . . 12 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
29 3anass 1042 . . . . . . . . . . . . . 14 ((𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ (𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)))
3029exbii 1774 . . . . . . . . . . . . 13 (∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ ∃𝑦(𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)))
31 19.42v 1918 . . . . . . . . . . . . 13 (∃𝑦(𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)) ↔ (𝑥𝐵 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
3230, 31bitri 264 . . . . . . . . . . . 12 (∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ (𝑥𝐵 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
3319, 28, 32sylanbrc 698 . . . . . . . . . . 11 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
34 bnj1189.2 . . . . . . . . . . 11 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
3533, 34bnj1198 30866 . . . . . . . . . 10 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦𝜓)
36 19.42v 1918 . . . . . . . . . 10 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
3718, 35, 36sylanbrc 698 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝜑𝜓))
381, 34bnj1190 31076 . . . . . . . . 9 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
3937, 38bnj593 30815 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
4039bnj937 30842 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
4140bnj1185 30864 . . . . . 6 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
42413comr 1273 . . . . 5 ((¬ 𝜒𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
43423expib 1268 . . . 4 𝜒 → ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
4417, 43pm2.61i 176 . . 3 ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
457, 44bnj593 30815 . 2 (𝜑 → ∃𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
46 nfre1 3005 . . 3 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥
474619.9 2072 . 2 (∃𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
4845, 47sylib 208 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj69  31078
  Copyright terms: Public domain W3C validator