| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1241 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1241.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| bnj1241.2 | ⊢ (𝜓 → 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| bnj1241 | ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1241.2 | . . . 4 ⊢ (𝜓 → 𝐶 = 𝐴) | |
| 2 | 1 | eqcomd 2628 | . . 3 ⊢ (𝜓 → 𝐴 = 𝐶) |
| 3 | 2 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| 4 | bnj1241.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 5 | 4 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐵) |
| 6 | 3, 5 | eqsstr3d 3640 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ⊆ wss 3574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 |
| This theorem is referenced by: bnj1245 31082 bnj1311 31092 |
| Copyright terms: Public domain | W3C validator |