| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1441 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1441.1 | ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴) |
| bnj1441.2 | ⊢ (𝜑 → ∀𝑦𝜑) |
| Ref | Expression |
|---|---|
| bnj1441 | ⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → ∀𝑦 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2921 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | bnj1441.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴) | |
| 3 | bnj1441.2 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 4 | 2, 3 | hban 2128 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → ∀𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 5 | 4 | hbab 2613 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ∀𝑦 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 6 | 1, 5 | hbxfreq 2730 | 1 ⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → ∀𝑦 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 ∈ wcel 1990 {cab 2608 {crab 2916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-rab 2921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |