| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1541 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1541.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝐴 ≠ 𝐵)) |
| bnj1541.2 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| bnj1541 | ⊢ (𝜓 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1541.2 | . . . 4 ⊢ ¬ 𝜑 | |
| 2 | bnj1541.1 | . . . 4 ⊢ (𝜑 ↔ (𝜓 ∧ 𝐴 ≠ 𝐵)) | |
| 3 | 1, 2 | mtbi 312 | . . 3 ⊢ ¬ (𝜓 ∧ 𝐴 ≠ 𝐵) |
| 4 | 3 | imnani 439 | . 2 ⊢ (𝜓 → ¬ 𝐴 ≠ 𝐵) |
| 5 | nne 2798 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 6 | 4, 5 | sylib 208 | 1 ⊢ (𝜓 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ≠ wne 2794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ne 2795 |
| This theorem is referenced by: bnj1312 31126 bnj1523 31139 |
| Copyright terms: Public domain | W3C validator |