Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1523 Structured version   Visualization version   GIF version

Theorem bnj1523 31139
Description: Technical lemma for bnj1522 31140. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1523.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1523.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1523.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1523.4 𝐹 = 𝐶
bnj1523.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
bnj1523.6 (𝜓 ↔ (𝜑𝐹𝐻))
bnj1523.7 (𝜒 ↔ (𝜓𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
bnj1523.8 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
bnj1523.9 (𝜃 ↔ (𝜒𝑦𝐷 ∧ ∀𝑧𝐷 ¬ 𝑧𝑅𝑦))
Assertion
Ref Expression
bnj1523 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑓   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝐺,𝑑,𝑓,𝑥   𝑦,𝐺   𝑥,𝐻,𝑦,𝑧   𝑅,𝑑,𝑓,𝑥   𝑦,𝑅,𝑧   𝑌,𝑑   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑧)   𝐻(𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓)

Proof of Theorem bnj1523
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1523.5 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
2 bnj1523.6 . . 3 (𝜓 ↔ (𝜑𝐹𝐻))
3 bnj1523.9 . . . . . . . . . . . . 13 (𝜃 ↔ (𝜒𝑦𝐷 ∧ ∀𝑧𝐷 ¬ 𝑧𝑅𝑦))
4 bnj1523.7 . . . . . . . . . . . . . 14 (𝜒 ↔ (𝜓𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
5 bnj1523.1 . . . . . . . . . . . . . . . . 17 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
6 bnj1523.2 . . . . . . . . . . . . . . . . 17 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
7 bnj1523.3 . . . . . . . . . . . . . . . . 17 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
8 bnj1523.4 . . . . . . . . . . . . . . . . 17 𝐹 = 𝐶
95, 6, 7, 8bnj60 31130 . . . . . . . . . . . . . . . 16 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
101, 9bnj835 30829 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐴)
112, 10bnj832 30828 . . . . . . . . . . . . . 14 (𝜓𝐹 Fn 𝐴)
124, 11bnj835 30829 . . . . . . . . . . . . 13 (𝜒𝐹 Fn 𝐴)
133, 12bnj835 30829 . . . . . . . . . . . 12 (𝜃𝐹 Fn 𝐴)
141simp2bi 1077 . . . . . . . . . . . . . . 15 (𝜑𝐻 Fn 𝐴)
152, 14bnj832 30828 . . . . . . . . . . . . . 14 (𝜓𝐻 Fn 𝐴)
164, 15bnj835 30829 . . . . . . . . . . . . 13 (𝜒𝐻 Fn 𝐴)
173, 16bnj835 30829 . . . . . . . . . . . 12 (𝜃𝐻 Fn 𝐴)
18 bnj213 30952 . . . . . . . . . . . . 13 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1918a1i 11 . . . . . . . . . . . 12 (𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
203simp3bi 1078 . . . . . . . . . . . . . . . . 17 (𝜃 → ∀𝑧𝐷 ¬ 𝑧𝑅𝑦)
2120bnj1211 30868 . . . . . . . . . . . . . . . 16 (𝜃 → ∀𝑧(𝑧𝐷 → ¬ 𝑧𝑅𝑦))
22 con2b 349 . . . . . . . . . . . . . . . . 17 ((𝑧𝐷 → ¬ 𝑧𝑅𝑦) ↔ (𝑧𝑅𝑦 → ¬ 𝑧𝐷))
2322albii 1747 . . . . . . . . . . . . . . . 16 (∀𝑧(𝑧𝐷 → ¬ 𝑧𝑅𝑦) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷))
2421, 23sylib 208 . . . . . . . . . . . . . . 15 (𝜃 → ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷))
25 bnj1418 31108 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → 𝑧𝑅𝑦)
2625imim1i 63 . . . . . . . . . . . . . . . 16 ((𝑧𝑅𝑦 → ¬ 𝑧𝐷) → (𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2726alimi 1739 . . . . . . . . . . . . . . 15 (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷) → ∀𝑧(𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2824, 27syl 17 . . . . . . . . . . . . . 14 (𝜃 → ∀𝑧(𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2928bnj1142 30860 . . . . . . . . . . . . 13 (𝜃 → ∀𝑧 ∈ pred (𝑦, 𝐴, 𝑅) ¬ 𝑧𝐷)
30 bnj1523.8 . . . . . . . . . . . . . 14 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
315bnj1309 31090 . . . . . . . . . . . . . . . . . . 19 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
327, 31bnj1307 31091 . . . . . . . . . . . . . . . . . 18 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
3332nfcii 2755 . . . . . . . . . . . . . . . . 17 𝑥𝐶
3433nfuni 4442 . . . . . . . . . . . . . . . 16 𝑥 𝐶
358, 34nfcxfr 2762 . . . . . . . . . . . . . . 15 𝑥𝐹
3635nfcrii 2757 . . . . . . . . . . . . . 14 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
3730, 36bnj1534 30923 . . . . . . . . . . . . 13 𝐷 = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
3829, 18, 37bnj1533 30922 . . . . . . . . . . . 12 (𝜃 → ∀𝑧 ∈ pred (𝑦, 𝐴, 𝑅)(𝐹𝑧) = (𝐻𝑧))
3913, 17, 19, 38bnj1536 30924 . . . . . . . . . . 11 (𝜃 → (𝐹 ↾ pred(𝑦, 𝐴, 𝑅)) = (𝐻 ↾ pred(𝑦, 𝐴, 𝑅)))
4039opeq2d 4409 . . . . . . . . . 10 (𝜃 → ⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩ = ⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩)
4140fveq2d 6195 . . . . . . . . 9 (𝜃 → (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
425, 6, 7, 8bnj1500 31136 . . . . . . . . . . . . . . 15 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
431, 42bnj835 30829 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
442, 43bnj832 30828 . . . . . . . . . . . . 13 (𝜓 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
454, 44bnj835 30829 . . . . . . . . . . . 12 (𝜒 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
4645, 36bnj1529 31138 . . . . . . . . . . 11 (𝜒 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
473, 46bnj835 30829 . . . . . . . . . 10 (𝜃 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
4830ssrab3 3688 . . . . . . . . . . 11 𝐷𝐴
493simp2bi 1077 . . . . . . . . . . 11 (𝜃𝑦𝐷)
5048, 49bnj1213 30869 . . . . . . . . . 10 (𝜃𝑦𝐴)
5147, 50bnj1294 30888 . . . . . . . . 9 (𝜃 → (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
521simp3bi 1078 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
532, 52bnj832 30828 . . . . . . . . . . . . 13 (𝜓 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
544, 53bnj835 30829 . . . . . . . . . . . 12 (𝜒 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
55 ax-5 1839 . . . . . . . . . . . 12 (𝑣𝐻 → ∀𝑥 𝑣𝐻)
5654, 55bnj1529 31138 . . . . . . . . . . 11 (𝜒 → ∀𝑦𝐴 (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
573, 56bnj835 30829 . . . . . . . . . 10 (𝜃 → ∀𝑦𝐴 (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
5857, 50bnj1294 30888 . . . . . . . . 9 (𝜃 → (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
5941, 51, 583eqtr4d 2666 . . . . . . . 8 (𝜃 → (𝐹𝑦) = (𝐻𝑦))
6030, 36bnj1534 30923 . . . . . . . . . . 11 𝐷 = {𝑦𝐴 ∣ (𝐹𝑦) ≠ (𝐻𝑦)}
6160bnj1538 30925 . . . . . . . . . 10 (𝑦𝐷 → (𝐹𝑦) ≠ (𝐻𝑦))
623, 61bnj836 30830 . . . . . . . . 9 (𝜃 → (𝐹𝑦) ≠ (𝐻𝑦))
6362neneqd 2799 . . . . . . . 8 (𝜃 → ¬ (𝐹𝑦) = (𝐻𝑦))
6459, 63pm2.65i 185 . . . . . . 7 ¬ 𝜃
6564nex 1731 . . . . . 6 ¬ ∃𝑦𝜃
661simp1bi 1076 . . . . . . . . . 10 (𝜑𝑅 FrSe 𝐴)
672, 66bnj832 30828 . . . . . . . . 9 (𝜓𝑅 FrSe 𝐴)
684, 67bnj835 30829 . . . . . . . 8 (𝜒𝑅 FrSe 𝐴)
6948a1i 11 . . . . . . . 8 (𝜒𝐷𝐴)
704simp2bi 1077 . . . . . . . . . 10 (𝜒𝑥𝐴)
714simp3bi 1078 . . . . . . . . . 10 (𝜒 → (𝐹𝑥) ≠ (𝐻𝑥))
7230rabeq2i 3197 . . . . . . . . . 10 (𝑥𝐷 ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
7370, 71, 72sylanbrc 698 . . . . . . . . 9 (𝜒𝑥𝐷)
74 ne0i 3921 . . . . . . . . 9 (𝑥𝐷𝐷 ≠ ∅)
7573, 74syl 17 . . . . . . . 8 (𝜒𝐷 ≠ ∅)
76 bnj69 31078 . . . . . . . 8 ((𝑅 FrSe 𝐴𝐷𝐴𝐷 ≠ ∅) → ∃𝑦𝐷𝑧𝐷 ¬ 𝑧𝑅𝑦)
7768, 69, 75, 76syl3anc 1326 . . . . . . 7 (𝜒 → ∃𝑦𝐷𝑧𝐷 ¬ 𝑧𝑅𝑦)
7877, 3bnj1209 30867 . . . . . 6 (𝜒 → ∃𝑦𝜃)
7965, 78mto 188 . . . . 5 ¬ 𝜒
8079nex 1731 . . . 4 ¬ ∃𝑥𝜒
812simprbi 480 . . . . . 6 (𝜓𝐹𝐻)
8211, 15, 81, 36bnj1542 30927 . . . . 5 (𝜓 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐻𝑥))
835, 6, 7, 8, 1, 2bnj1525 31137 . . . . 5 (𝜓 → ∀𝑥𝜓)
8482, 4, 83bnj1521 30921 . . . 4 (𝜓 → ∃𝑥𝜒)
8580, 84mto 188 . . 3 ¬ 𝜓
862, 85bnj1541 30926 . 2 (𝜑𝐹 = 𝐻)
871, 86sylbir 225 1 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915  cop 4183   cuni 4436   class class class wbr 4653  cres 5116   Fn wfn 5883  cfv 5888   predc-bnj14 30754   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1522  31140
  Copyright terms: Public domain W3C validator