| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj229 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj517 30955. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj229.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Ref | Expression |
|---|---|
| bnj229 | ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj213 30952 | . . 3 ⊢ pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 | |
| 2 | 1 | bnj226 30802 | . 2 ⊢ ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 |
| 3 | bnj229.1 | . . . . . . . 8 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 4 | 3 | bnj222 30953 | . . . . . . 7 ⊢ (𝜓 ↔ ∀𝑚 ∈ ω (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
| 5 | 4 | bnj228 30803 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝜓) → (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
| 6 | 5 | adantl 482 | . . . . 5 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
| 7 | eleq1 2689 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 → (suc 𝑚 ∈ 𝑁 ↔ 𝑛 ∈ 𝑁)) | |
| 8 | fveq2 6191 | . . . . . . . 8 ⊢ (suc 𝑚 = 𝑛 → (𝐹‘suc 𝑚) = (𝐹‘𝑛)) | |
| 9 | 8 | eqeq1d 2624 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 → ((𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
| 10 | 7, 9 | imbi12d 334 | . . . . . 6 ⊢ (suc 𝑚 = 𝑛 → ((suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
| 11 | 10 | adantr 481 | . . . . 5 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → ((suc 𝑚 ∈ 𝑁 → (𝐹‘suc 𝑚) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) ↔ (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)))) |
| 12 | 6, 11 | mpbid 222 | . . . 4 ⊢ ((suc 𝑚 = 𝑛 ∧ (𝑚 ∈ ω ∧ 𝜓)) → (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
| 13 | 12 | 3impb 1260 | . . 3 ⊢ ((suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓) → (𝑛 ∈ 𝑁 → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅))) |
| 14 | 13 | impcom 446 | . 2 ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) = ∪ 𝑦 ∈ (𝐹‘𝑚) pred(𝑦, 𝐴, 𝑅)) |
| 15 | 2, 14 | bnj1262 30881 | 1 ⊢ ((𝑛 ∈ 𝑁 ∧ (suc 𝑚 = 𝑛 ∧ 𝑚 ∈ ω ∧ 𝜓)) → (𝐹‘𝑛) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 ∪ ciun 4520 suc csuc 5725 ‘cfv 5888 ωcom 7065 predc-bnj14 30754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-suc 5729 df-iota 5851 df-fv 5896 df-bnj14 30755 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |