| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj958 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj958.1 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
| bnj958.2 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| Ref | Expression |
|---|---|
| bnj958 | ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj958.2 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
| 2 | nfcv 2764 | . . . . . 6 ⊢ Ⅎ𝑦𝑓 | |
| 3 | nfcv 2764 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑛 | |
| 4 | bnj958.1 | . . . . . . . . 9 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
| 5 | nfiu1 4550 | . . . . . . . . 9 ⊢ Ⅎ𝑦∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
| 6 | 4, 5 | nfcxfr 2762 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐶 |
| 7 | 3, 6 | nfop 4418 | . . . . . . 7 ⊢ Ⅎ𝑦〈𝑛, 𝐶〉 |
| 8 | 7 | nfsn 4242 | . . . . . 6 ⊢ Ⅎ𝑦{〈𝑛, 𝐶〉} |
| 9 | 2, 8 | nfun 3769 | . . . . 5 ⊢ Ⅎ𝑦(𝑓 ∪ {〈𝑛, 𝐶〉}) |
| 10 | 1, 9 | nfcxfr 2762 | . . . 4 ⊢ Ⅎ𝑦𝐺 |
| 11 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑦𝑖 | |
| 12 | 10, 11 | nffv 6198 | . . 3 ⊢ Ⅎ𝑦(𝐺‘𝑖) |
| 13 | 12 | nfeq1 2778 | . 2 ⊢ Ⅎ𝑦(𝐺‘𝑖) = (𝑓‘𝑖) |
| 14 | 13 | nf5ri 2065 | 1 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 = wceq 1483 ∪ cun 3572 {csn 4177 〈cop 4183 ∪ ciun 4520 ‘cfv 5888 predc-bnj14 30754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: bnj966 31014 bnj967 31015 |
| Copyright terms: Public domain | W3C validator |