MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnv Structured version   Visualization version   GIF version

Theorem bnnv 27722
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
bnnv (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)

Proof of Theorem bnnv
StepHypRef Expression
1 eqid 2622 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2622 . . 3 (IndMet‘𝑈) = (IndMet‘𝑈)
31, 2iscbn 27720 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈))))
43simplbi 476 1 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990  cfv 5888  CMetcms 23052  NrmCVeccnv 27439  BaseSetcba 27441  IndMetcims 27446  CBanccbn 27718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-cbn 27719
This theorem is referenced by:  bnrel  27723  bnsscmcl  27724  ubthlem1  27726  ubthlem2  27727  ubthlem3  27728  minvecolem1  27730  hlnv  27747
  Copyright terms: Public domain W3C validator