| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqdi | Structured version Visualization version GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqdi.1 | ⊢ (𝜑 → 𝐶𝐴𝐷) |
| Ref | Expression |
|---|---|
| breqdi | ⊢ (𝜑 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqdi.1 | . 2 ⊢ (𝜑 → 𝐶𝐴𝐷) | |
| 2 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breqd 4664 | . 2 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| 4 | 1, 3 | mpbid 222 | 1 ⊢ (𝜑 → 𝐶𝐵𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 class class class wbr 4653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-br 4654 |
| This theorem is referenced by: brfvimex 38324 brovmptimex 38325 ntrclsnvobr 38350 clsneibex 38400 neicvgbex 38410 |
| Copyright terms: Public domain | W3C validator |