Proof of Theorem neicvgbex
| Step | Hyp | Ref
| Expression |
| 1 | | neicvgbex.h |
. . . . 5
⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
| 2 | | neicvgbex.d |
. . . . . . 7
⊢ 𝐷 = (𝑃‘𝐵) |
| 3 | 2 | coeq1i 5281 |
. . . . . 6
⊢ (𝐷 ∘ 𝐺) = ((𝑃‘𝐵) ∘ 𝐺) |
| 4 | 3 | coeq2i 5282 |
. . . . 5
⊢ (𝐹 ∘ (𝐷 ∘ 𝐺)) = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) |
| 5 | 1, 4 | eqtri 2644 |
. . . 4
⊢ 𝐻 = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) |
| 6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐻 = (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))) |
| 7 | | neicvgbex.r |
. . 3
⊢ (𝜑 → 𝑁𝐻𝑀) |
| 8 | 6, 7 | breqdi 4668 |
. 2
⊢ (𝜑 → 𝑁(𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))𝑀) |
| 9 | | brne0 4702 |
. 2
⊢ (𝑁(𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺))𝑀 → (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) ≠ ∅) |
| 10 | | fvprc 6185 |
. . . . . . . . . . . . 13
⊢ (¬
𝐵 ∈ V → (𝑃‘𝐵) = ∅) |
| 11 | 10 | dmeqd 5326 |
. . . . . . . . . . . 12
⊢ (¬
𝐵 ∈ V → dom
(𝑃‘𝐵) = dom ∅) |
| 12 | | dm0 5339 |
. . . . . . . . . . . 12
⊢ dom
∅ = ∅ |
| 13 | 11, 12 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (¬
𝐵 ∈ V → dom
(𝑃‘𝐵) = ∅) |
| 14 | 13 | ineq1d 3813 |
. . . . . . . . . 10
⊢ (¬
𝐵 ∈ V → (dom
(𝑃‘𝐵) ∩ ran 𝐺) = (∅ ∩ ran 𝐺)) |
| 15 | | incom 3805 |
. . . . . . . . . . 11
⊢ (∅
∩ ran 𝐺) = (ran 𝐺 ∩ ∅) |
| 16 | | in0 3968 |
. . . . . . . . . . 11
⊢ (ran
𝐺 ∩ ∅) =
∅ |
| 17 | 15, 16 | eqtri 2644 |
. . . . . . . . . 10
⊢ (∅
∩ ran 𝐺) =
∅ |
| 18 | 14, 17 | syl6eq 2672 |
. . . . . . . . 9
⊢ (¬
𝐵 ∈ V → (dom
(𝑃‘𝐵) ∩ ran 𝐺) = ∅) |
| 19 | 18 | coemptyd 13718 |
. . . . . . . 8
⊢ (¬
𝐵 ∈ V → ((𝑃‘𝐵) ∘ 𝐺) = ∅) |
| 20 | 19 | rneqd 5353 |
. . . . . . 7
⊢ (¬
𝐵 ∈ V → ran
((𝑃‘𝐵) ∘ 𝐺) = ran ∅) |
| 21 | | rn0 5377 |
. . . . . . 7
⊢ ran
∅ = ∅ |
| 22 | 20, 21 | syl6eq 2672 |
. . . . . 6
⊢ (¬
𝐵 ∈ V → ran
((𝑃‘𝐵) ∘ 𝐺) = ∅) |
| 23 | 22 | ineq2d 3814 |
. . . . 5
⊢ (¬
𝐵 ∈ V → (dom
𝐹 ∩ ran ((𝑃‘𝐵) ∘ 𝐺)) = (dom 𝐹 ∩ ∅)) |
| 24 | | in0 3968 |
. . . . 5
⊢ (dom
𝐹 ∩ ∅) =
∅ |
| 25 | 23, 24 | syl6eq 2672 |
. . . 4
⊢ (¬
𝐵 ∈ V → (dom
𝐹 ∩ ran ((𝑃‘𝐵) ∘ 𝐺)) = ∅) |
| 26 | 25 | coemptyd 13718 |
. . 3
⊢ (¬
𝐵 ∈ V → (𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) = ∅) |
| 27 | 26 | necon1ai 2821 |
. 2
⊢ ((𝐹 ∘ ((𝑃‘𝐵) ∘ 𝐺)) ≠ ∅ → 𝐵 ∈ V) |
| 28 | 8, 9, 27 | 3syl 18 |
1
⊢ (𝜑 → 𝐵 ∈ V) |