| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cadnot | Structured version Visualization version GIF version | ||
| Description: The adder carry distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| cadnot | ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 509 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | ianor 509 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜒)) | |
| 3 | ianor 509 | . . 3 ⊢ (¬ (𝜓 ∧ 𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒)) | |
| 4 | 1, 2, 3 | 3anbi123i 1251 | . 2 ⊢ ((¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒)) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜒) ∧ (¬ 𝜓 ∨ ¬ 𝜒))) |
| 5 | 3ioran 1056 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ (¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒))) | |
| 6 | cador 1547 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) | |
| 7 | 5, 6 | xchnxbir 323 | . 2 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∧ ¬ (𝜑 ∧ 𝜒) ∧ ¬ (𝜓 ∧ 𝜒))) |
| 8 | cadan 1548 | . 2 ⊢ (cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (¬ 𝜑 ∨ ¬ 𝜒) ∧ (¬ 𝜓 ∨ ¬ 𝜒))) | |
| 9 | 4, 7, 8 | 3bitr4i 292 | 1 ⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∨ w3o 1036 ∧ w3a 1037 caddwcad 1545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-xor 1465 df-cad 1546 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |