| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbv3v | Structured version Visualization version GIF version | ||
| Description: Version of cbv3 2265 with a dv condition, which does not require ax-13 2246. (Contributed by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbv3v.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbv3v.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbv3v.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| cbv3v | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv3v.nf1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfal 2153 | . 2 ⊢ Ⅎ𝑦∀𝑥𝜑 |
| 3 | cbv3v.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | cbv3v.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | spimv1 2115 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 6 | 2, 5 | alrimi 2082 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: cbv3hv 2174 cbvalv1 2175 bj-cbv1v 32729 |
| Copyright terms: Public domain | W3C validator |