| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsalgALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of ceqsalg 3230, not using ceqsalt 3228. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ceqsalg.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsalg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsalgALT | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 3215 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | nfa1 2028 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝐴 → 𝜑) | |
| 3 | ceqsalg.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | ceqsalg.2 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | biimpd 219 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| 6 | 5 | a2i 14 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
| 7 | 6 | sps 2055 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
| 8 | 2, 3, 7 | exlimd 2087 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
| 9 | 1, 8 | syl5com 31 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓)) |
| 10 | 4 | biimprcd 240 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 11 | 3, 10 | alrimi 2082 | . 2 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 12 | 9, 11 | impbid1 215 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 = wceq 1483 ∃wex 1704 Ⅎwnf 1708 ∈ wcel 1990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |