![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmvsdi | Structured version Visualization version GIF version |
Description: Distributive law for scalar product (left-distributivity). (lmodvsdi 18886 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
Ref | Expression |
---|---|
clmvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
clmvsdir.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
clmvsdi | ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 22867 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | clmvscl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | clmvsdir.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | clmvscl.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | clmvscl.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | clmvscl.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 2, 3, 4, 5, 6 | lmodvsdi 18886 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
8 | 1, 7 | sylan 488 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 Scalarcsca 15944 ·𝑠 cvsca 15945 LModclmod 18863 ℂModcclm 22862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-lmod 18865 df-clm 22863 |
This theorem is referenced by: clmnegsubdi2 22905 clmsub4 22906 ncvspi 22956 |
Copyright terms: Public domain | W3C validator |