| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnre | Structured version Visualization version GIF version | ||
| Description: Alias for ax-cnre 10009, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| cnre | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-cnre 10009 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 (class class class)co 6650 ℂcc 9934 ℝcr 9935 ici 9938 + caddc 9939 · cmul 9941 |
| This theorem was proved from axioms: ax-cnre 10009 |
| This theorem is referenced by: mulid1 10037 1re 10039 mul02 10214 cnegex 10217 recex 10659 creur 11014 creui 11015 cju 11016 cnref1o 11827 replim 13856 ipasslem11 27695 |
| Copyright terms: Public domain | W3C validator |