MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnref1o Structured version   Visualization version   GIF version

Theorem cnref1o 11827
Description: There is a natural one-to-one mapping from (ℝ × ℝ) to , where we map 𝑥, 𝑦 to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of (see df-c 9942), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnref1o 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnref1o
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnref1o.1 . . . . 5 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 ovex 6678 . . . . 5 (𝑥 + (i · 𝑦)) ∈ V
31, 2fnmpt2i 7239 . . . 4 𝐹 Fn (ℝ × ℝ)
4 1st2nd2 7205 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
54fveq2d 6195 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
6 df-ov 6653 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
75, 6syl6eqr 2674 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
8 xp1st 7198 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
9 xp2nd 7199 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
10 oveq1 6657 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝑥 + (i · 𝑦)) = ((1st𝑧) + (i · 𝑦)))
11 oveq2 6658 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (i · 𝑦) = (i · (2nd𝑧)))
1211oveq2d 6666 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ((1st𝑧) + (i · 𝑦)) = ((1st𝑧) + (i · (2nd𝑧))))
13 ovex 6678 . . . . . . . . 9 ((1st𝑧) + (i · (2nd𝑧))) ∈ V
1410, 12, 1, 13ovmpt2 6796 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
158, 9, 14syl2anc 693 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
167, 15eqtrd 2656 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))))
178recnd 10068 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℂ)
18 ax-icn 9995 . . . . . . . 8 i ∈ ℂ
199recnd 10068 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℂ)
20 mulcl 10020 . . . . . . . 8 ((i ∈ ℂ ∧ (2nd𝑧) ∈ ℂ) → (i · (2nd𝑧)) ∈ ℂ)
2118, 19, 20sylancr 695 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (i · (2nd𝑧)) ∈ ℂ)
2217, 21addcld 10059 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) + (i · (2nd𝑧))) ∈ ℂ)
2316, 22eqeltrd 2701 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ ℂ)
2423rgen 2922 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ
25 ffnfv 6388 . . . 4 (𝐹:(ℝ × ℝ)⟶ℂ ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ))
263, 24, 25mpbir2an 955 . . 3 𝐹:(ℝ × ℝ)⟶ℂ
278, 9jca 554 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ))
28 xp1st 7198 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
29 xp2nd 7199 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
3028, 29jca 554 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ))
31 cru 11012 . . . . . . 7 ((((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) ∧ ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
3227, 30, 31syl2an 494 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
33 fveq2 6191 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
34 fveq2 6191 . . . . . . . . . 10 (𝑧 = 𝑤 → (1st𝑧) = (1st𝑤))
35 fveq2 6191 . . . . . . . . . . 11 (𝑧 = 𝑤 → (2nd𝑧) = (2nd𝑤))
3635oveq2d 6666 . . . . . . . . . 10 (𝑧 = 𝑤 → (i · (2nd𝑧)) = (i · (2nd𝑤)))
3734, 36oveq12d 6668 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))))
3833, 37eqeq12d 2637 . . . . . . . 8 (𝑧 = 𝑤 → ((𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))) ↔ (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤)))))
3938, 16vtoclga 3272 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤))))
4016, 39eqeqan12d 2638 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤)))))
41 1st2nd2 7205 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
424, 41eqeqan12d 2638 . . . . . . 7 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
43 fvex 6201 . . . . . . . 8 (1st𝑧) ∈ V
44 fvex 6201 . . . . . . . 8 (2nd𝑧) ∈ V
4543, 44opth 4945 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
4642, 45syl6bb 276 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4732, 40, 463bitr4d 300 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
4847biimpd 219 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
4948rgen2a 2977 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
50 dff13 6512 . . 3 (𝐹:(ℝ × ℝ)–1-1→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
5126, 49, 50mpbir2an 955 . 2 𝐹:(ℝ × ℝ)–1-1→ℂ
52 cnre 10036 . . . . . 6 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
53 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + (i · 𝑦)) = (𝑢 + (i · 𝑦)))
54 oveq2 6658 . . . . . . . . . 10 (𝑦 = 𝑣 → (i · 𝑦) = (i · 𝑣))
5554oveq2d 6666 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 + (i · 𝑦)) = (𝑢 + (i · 𝑣)))
56 ovex 6678 . . . . . . . . 9 (𝑢 + (i · 𝑣)) ∈ V
5753, 55, 1, 56ovmpt2 6796 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣)))
5857eqeq2d 2632 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = (𝑢 + (i · 𝑣))))
59582rexbiia 3055 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
6052, 59sylibr 224 . . . . 5 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
61 fveq2 6191 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
62 df-ov 6653 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
6361, 62syl6eqr 2674 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
6463eqeq2d 2632 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
6564rexxp 5264 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
6660, 65sylibr 224 . . . 4 (𝑤 ∈ ℂ → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
6766rgen 2922 . . 3 𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
68 dffo3 6374 . . 3 (𝐹:(ℝ × ℝ)–onto→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
6926, 67, 68mpbir2an 955 . 2 𝐹:(ℝ × ℝ)–onto→ℂ
70 df-f1o 5895 . 2 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ ↔ (𝐹:(ℝ × ℝ)–1-1→ℂ ∧ 𝐹:(ℝ × ℝ)–onto→ℂ))
7151, 69, 70mpbir2an 955 1 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cop 4183   × cxp 5112   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  cc 9934  cr 9935  ici 9938   + caddc 9939   · cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  cnexALT  11828  cnrecnv  13905  cpnnen  14958  cnheiborlem  22753  mbfimaopnlem  23422
  Copyright terms: Public domain W3C validator