![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbidm | Structured version Visualization version GIF version |
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
csbidm | ⊢ ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbnest1g 4001 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋⦋𝐴 / 𝑥⦌𝐴 / 𝑥⦌𝐵) | |
2 | csbconstg 3546 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐴 = 𝐴) | |
3 | 2 | csbeq1d 3540 | . . 3 ⊢ (𝐴 ∈ V → ⦋⦋𝐴 / 𝑥⦌𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
4 | 1, 3 | eqtrd 2656 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
5 | csbprc 3980 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
6 | csbprc 3980 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
7 | 5, 6 | eqtr4d 2659 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
8 | 4, 7 | pm2.61i 176 | 1 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⦋csb 3533 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |