MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbtt Structured version   Visualization version   GIF version

Theorem csbtt 3544
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
csbtt ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)

Proof of Theorem csbtt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3534 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 nfcr 2756 . . . 4 (𝑥𝐵 → Ⅎ𝑥 𝑦𝐵)
3 sbctt 3500 . . . 4 ((𝐴𝑉 ∧ Ⅎ𝑥 𝑦𝐵) → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵))
42, 3sylan2 491 . . 3 ((𝐴𝑉𝑥𝐵) → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵))
54abbi1dv 2743 . 2 ((𝐴𝑉𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐵)
61, 5syl5eq 2668 1 ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  {cab 2608  wnfc 2751  [wsbc 3435  csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534
This theorem is referenced by:  csbconstgf  3545  sbnfc2  4007  constlimc  39856
  Copyright terms: Public domain W3C validator