MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrcplgr Structured version   Visualization version   GIF version

Theorem cusgrcplgr 26316
Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
cusgrcplgr (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)

Proof of Theorem cusgrcplgr
StepHypRef Expression
1 iscusgr 26314 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
21simprbi 480 1 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990   USGraph cusgr 26044  ComplGraphccplgr 26226  ComplUSGraphccusgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-cusgr 26232
This theorem is referenced by:  cusgrsizeindslem  26347  cusgrrusgr  26477
  Copyright terms: Public domain W3C validator