| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deceq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deceq2 | ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6658 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐶) + 𝐴) = (((9 + 1) · 𝐶) + 𝐵)) | |
| 2 | df-dec 11494 | . 2 ⊢ ;𝐶𝐴 = (((9 + 1) · 𝐶) + 𝐴) | |
| 3 | df-dec 11494 | . 2 ⊢ ;𝐶𝐵 = (((9 + 1) · 𝐶) + 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2681 | 1 ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 (class class class)co 6650 1c1 9937 + caddc 9939 · cmul 9941 9c9 11077 ;cdc 11493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-dec 11494 |
| This theorem is referenced by: deceq2i 11505 |
| Copyright terms: Public domain | W3C validator |