MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth3v Structured version   Visualization version   GIF version

Theorem dedth3v 4144
Description: Weak deduction theorem for eliminating a hypothesis with 3 class variables. See comments in dedth2v 4143. (Contributed by NM, 13-Aug-1999.) (Proof shortened by Eric Schmidt, 28-Jul-2009.)
Hypotheses
Ref Expression
dedth3v.1 (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜓𝜒))
dedth3v.2 (𝐵 = if(𝜑, 𝐵, 𝑅) → (𝜒𝜃))
dedth3v.3 (𝐶 = if(𝜑, 𝐶, 𝑆) → (𝜃𝜏))
dedth3v.4 𝜏
Assertion
Ref Expression
dedth3v (𝜑𝜓)

Proof of Theorem dedth3v
StepHypRef Expression
1 dedth3v.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜓𝜒))
2 dedth3v.2 . . . 4 (𝐵 = if(𝜑, 𝐵, 𝑅) → (𝜒𝜃))
3 dedth3v.3 . . . 4 (𝐶 = if(𝜑, 𝐶, 𝑆) → (𝜃𝜏))
4 dedth3v.4 . . . 4 𝜏
51, 2, 3, 4dedth3h 4141 . . 3 ((𝜑𝜑𝜑) → 𝜓)
653anidm12 1383 . 2 ((𝜑𝜑) → 𝜓)
76anidms 677 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-if 4087
This theorem is referenced by:  sseliALT  4791
  Copyright terms: Public domain W3C validator