| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-3o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-3o | ⊢ 3𝑜 = suc 2𝑜 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c3o 7555 | . 2 class 3𝑜 | |
| 2 | c2o 7554 | . . 3 class 2𝑜 | |
| 3 | 2 | csuc 5725 | . 2 class suc 2𝑜 |
| 4 | 1, 3 | wceq 1483 | 1 wff 3𝑜 = suc 2𝑜 |
| Colors of variables: wff setvar class |
| This definition is referenced by: 3on 7570 o2p2e4 7621 3onn 7721 en3 8197 hash3 13194 finxp3o 33237 df3o2 38322 df3o3 38323 clsk1independent 38344 |
| Copyright terms: Public domain | W3C validator |