HomeHome Metamath Proof Explorer
Theorem List (p. 76 of 426)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 7501-7600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtz7.44lem1 7501* 𝐺 is a function. Lemma for tz7.44-1 7502, tz7.44-2 7503, and tz7.44-3 7504. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
𝐺 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}       Fun 𝐺
 
Theoremtz7.44-1 7502* The value of 𝐹 at . Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))    &   (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))    &   𝐴 ∈ V       (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
 
Theoremtz7.44-2 7503* The value of 𝐹 at a successor ordinal. Part 2 of Theorem 7.44 of [TakeutiZaring] p. 49. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))    &   (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))    &   (𝑦𝑋 → (𝐹𝑦) ∈ V)    &   𝐹 Fn 𝑋    &   Ord 𝑋       (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
 
Theoremtz7.44-3 7504* The value of 𝐹 at a limit ordinal. Part 3 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))    &   (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))    &   (𝑦𝑋 → (𝐹𝑦) ∈ V)    &   𝐹 Fn 𝑋    &   Ord 𝑋       ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
 
2.4.16  Recursive definition generator
 
Syntaxcrdg 7505 Extend class notation with the recursive definition generator, with characteristic function 𝐹 and initial value 𝐼.
class rec(𝐹, 𝐼)
 
Definitiondf-rdg 7506* Define a recursive definition generator on On (the class of ordinal numbers) with characteristic function 𝐹 and initial value 𝐼. This combines functions 𝐹 in tfr1 7493 and 𝐺 in tz7.44-1 7502 into one definition. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our rec operation (especially when df-recs 7468 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple, as in for example oav 7591, from which we prove the recursive textbook definition as theorems oa0 7596, oasuc 7604, and oalim 7612 (with the help of theorems rdg0 7517, rdgsuc 7520, and rdglim2a 7529). We can also restrict the rec operation to define otherwise recursive functions on the natural numbers ω; see fr0g 7531 and frsuc 7532. Our rec operation apparently does not appear in published literature, although closely related is Definition 25.2 of [Quine] p. 177, which he uses to "turn...a recursion into a genuine or direct definition" (p. 174). Note that the if operations (see df-if 4087) select cases based on whether the domain of 𝑔 is zero, a successor, or a limit ordinal.

An important use of this definition is in the recursive sequence generator df-seq 12802 on the natural numbers (as a subset of the complex numbers), allowing us to define, with direct definitions, recursive infinite sequences such as the factorial function df-fac 13061 and integer powers df-exp 12861.

Note: We introduce rec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)

rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
 
Theoremrdgeq1 7507 Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
(𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))
 
Theoremrdgeq2 7508 Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
(𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
 
Theoremrdgeq12 7509 Equality theorem for the recursive definition generator. (Contributed by Scott Fenton, 28-Apr-2012.)
((𝐹 = 𝐺𝐴 = 𝐵) → rec(𝐹, 𝐴) = rec(𝐺, 𝐵))
 
Theoremnfrdg 7510 Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
𝑥𝐹    &   𝑥𝐴       𝑥rec(𝐹, 𝐴)
 
Theoremrdglem1 7511* Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.)
{𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
 
Theoremrdgfun 7512 The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.)
Fun rec(𝐹, 𝐴)
 
Theoremrdgdmlim 7513 The domain of the recursive definition generator is a limit ordinal. (Contributed by NM, 16-Nov-2014.)
Lim dom rec(𝐹, 𝐴)
 
Theoremrdgfnon 7514 The recursive definition generator is a function on ordinal numbers. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
rec(𝐹, 𝐴) Fn On
 
Theoremrdgvalg 7515* Value of the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝐵) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ 𝐵)))
 
Theoremrdgval 7516* Value of the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐵 ∈ On → (rec(𝐹, 𝐴)‘𝐵) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(rec(𝐹, 𝐴) ↾ 𝐵)))
 
Theoremrdg0 7517 The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
𝐴 ∈ V       (rec(𝐹, 𝐴)‘∅) = 𝐴
 
Theoremrdgseg 7518 The initial segments of the recursive definition generator are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
(𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
 
Theoremrdgsucg 7519 The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014.)
(𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
 
Theoremrdgsuc 7520 The value of the recursive definition generator at a successor. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
(𝐵 ∈ On → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
 
Theoremrdglimg 7521 The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 16-Nov-2014.)
((𝐵 ∈ dom rec(𝐹, 𝐴) ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = (rec(𝐹, 𝐴) “ 𝐵))
 
Theoremrdglim 7522 The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = (rec(𝐹, 𝐴) “ 𝐵))
 
Theoremrdg0g 7523 The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
(𝐴𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
 
Theoremrdgsucmptf 7524 The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐷    &   𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)    &   (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)       ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
 
Theoremrdgsucmptnf 7525 The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with rdgsucmptf 7524 to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐷    &   𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)    &   (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)       𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)
 
Theoremrdgsucmpt2 7526* This version of rdgsucmpt 7527 avoids the not-free hypothesis of rdgsucmptf 7524 by using two substitutions instead of one. (Contributed by Mario Carneiro, 11-Sep-2015.)
𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)    &   (𝑦 = 𝑥𝐸 = 𝐶)    &   (𝑦 = (𝐹𝐵) → 𝐸 = 𝐷)       ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
 
Theoremrdgsucmpt 7527* The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by Mario Carneiro, 9-Sep-2013.)
𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)    &   (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)       ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
 
Theoremrdglim2 7528* The value of the recursive definition generator at a limit ordinal, in terms of the union of all smaller values. (Contributed by NM, 23-Apr-1995.)
((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = (rec(𝐹, 𝐴)‘𝑥)})
 
Theoremrdglim2a 7529* The value of the recursive definition generator at a limit ordinal, in terms of indexed union of all smaller values. (Contributed by NM, 28-Jun-1998.)
((𝐵𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = 𝑥𝐵 (rec(𝐹, 𝐴)‘𝑥))
 
2.4.17  Finite recursion
 
Theoremfrfnom 7530 The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.)
(rec(𝐹, 𝐴) ↾ ω) Fn ω
 
Theoremfr0g 7531 The initial value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.)
(𝐴𝐵 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴)
 
Theoremfrsuc 7532 The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)))
 
Theoremfrsucmpt 7533 The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003.) (Revised by Scott Fenton, 2-Nov-2011.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐷    &   𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)    &   (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)       ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
 
Theoremfrsucmptn 7534 The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 7533 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐷    &   𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)    &   (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)       𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)
 
Theoremfrsucmpt2 7535* The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation), using double-substitution instead of a bound variable condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)    &   (𝑦 = 𝑥𝐸 = 𝐶)    &   (𝑦 = (𝐹𝐵) → 𝐸 = 𝐷)       ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
 
Theoremtz7.48lem 7536* A way of showing an ordinal function is one-to-one. (Contributed by NM, 9-Feb-1997.)
𝐹 Fn On       ((𝐴 ⊆ On ∧ ∀𝑥𝐴𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹𝐴))
 
Theoremtz7.48-2 7537* Proposition 7.48(2) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) (Revised by David Abernethy, 5-May-2013.)
𝐹 Fn On       (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
 
Theoremtz7.48-1 7538* Proposition 7.48(1) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
𝐹 Fn On       (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
 
Theoremtz7.48-3 7539* Proposition 7.48(3) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
𝐹 Fn On       (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
 
Theoremtz7.49 7540* Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 10-Jan-2013.)
𝐹 Fn On    &   (𝜑 ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))       ((𝐴𝐵𝜑) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
 
Theoremtz7.49c 7541* Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
𝐹 Fn On       ((𝐴𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
 
Syntaxcseqom 7542 Extend class notation to include index-aware recursive definitions.
class seq𝜔(𝐹, 𝐼)
 
Definitiondf-seqom 7543* Index-aware recursive definitions over ω. A mashup of df-rdg 7506 and df-seq 12802, this allows for recursive definitions that use an index in the recursion in cases where Infinity is not admitted. (Contributed by Stefan O'Rear, 1-Nov-2014.)
seq𝜔(𝐹, 𝐼) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
 
Theoremseqomlem0 7544* Lemma for seq𝜔. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.)
rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
 
Theoremseqomlem1 7545* Lemma for seq𝜔. The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)       (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
 
Theoremseqomlem2 7546* Lemma for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)       (𝑄 “ ω) Fn ω
 
Theoremseqomlem3 7547* Lemma for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.)
𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)       ((𝑄 “ ω)‘∅) = ( I ‘𝐼)
 
Theoremseqomlem4 7548* Lemma for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)       (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
 
Theoremseqomeq12 7549 Equality theorem for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.)
((𝐴 = 𝐵𝐶 = 𝐷) → seq𝜔(𝐴, 𝐶) = seq𝜔(𝐵, 𝐷))
 
Theoremfnseqom 7550 An index-aware recursive definition defines a function on the natural numbers. (Contributed by Stefan O'Rear, 1-Nov-2014.)
𝐺 = seq𝜔(𝐹, 𝐼)       𝐺 Fn ω
 
Theoremseqom0g 7551 Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revise by AV, 17-Sep-2021.)
𝐺 = seq𝜔(𝐹, 𝐼)       (𝐼𝑉 → (𝐺‘∅) = 𝐼)
 
Theoremseqomsuc 7552 Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.)
𝐺 = seq𝜔(𝐹, 𝐼)       (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺𝐴)))
 
2.4.18  Ordinal arithmetic
 
Syntaxc1o 7553 Extend the definition of a class to include the ordinal number 1.
class 1𝑜
 
Syntaxc2o 7554 Extend the definition of a class to include the ordinal number 2.
class 2𝑜
 
Syntaxc3o 7555 Extend the definition of a class to include the ordinal number 3.
class 3𝑜
 
Syntaxc4o 7556 Extend the definition of a class to include the ordinal number 4.
class 4𝑜
 
Syntaxcoa 7557 Extend the definition of a class to include the ordinal addition operation.
class +𝑜
 
Syntaxcomu 7558 Extend the definition of a class to include the ordinal multiplication operation.
class ·𝑜
 
Syntaxcoe 7559 Extend the definition of a class to include the ordinal exponentiation operation.
class 𝑜
 
Definitiondf-1o 7560 Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.)
1𝑜 = suc ∅
 
Definitiondf-2o 7561 Define the ordinal number 2. (Contributed by NM, 18-Feb-2004.)
2𝑜 = suc 1𝑜
 
Definitiondf-3o 7562 Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.)
3𝑜 = suc 2𝑜
 
Definitiondf-4o 7563 Define the ordinal number 4. (Contributed by Mario Carneiro, 14-Jul-2013.)
4𝑜 = suc 3𝑜
 
Definitiondf-oadd 7564* Define the ordinal addition operation. (Contributed by NM, 3-May-1995.)
+𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
 
Definitiondf-omul 7565* Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995.)
·𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)), ∅)‘𝑦))
 
Definitiondf-oexp 7566* Define the ordinal exponentiation operation. (Contributed by NM, 30-Dec-2004.)
𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1𝑜𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦)))
 
Theorem1on 7567 Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.)
1𝑜 ∈ On
 
Theorem2on 7568 Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
2𝑜 ∈ On
 
Theorem2on0 7569 Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
2𝑜 ≠ ∅
 
Theorem3on 7570 Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
3𝑜 ∈ On
 
Theorem4on 7571 Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
4𝑜 ∈ On
 
Theoremdf1o2 7572 Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
1𝑜 = {∅}
 
Theoremdf2o3 7573 Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
2𝑜 = {∅, 1𝑜}
 
Theoremdf2o2 7574 Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
2𝑜 = {∅, {∅}}
 
Theorem1n0 7575 Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.)
1𝑜 ≠ ∅
 
Theoremxp01disj 7576 Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
((𝐴 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅
 
Theoremordgt0ge1 7577 Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.)
(Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1𝑜𝐴))
 
Theoremordge1n0 7578 An ordinal greater than or equal to 1 is nonzero. (Contributed by NM, 21-Dec-2004.)
(Ord 𝐴 → (1𝑜𝐴𝐴 ≠ ∅))
 
Theoremel1o 7579 Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
(𝐴 ∈ 1𝑜𝐴 = ∅)
 
Theoremdif1o 7580 Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.)
(𝐴 ∈ (𝐵 ∖ 1𝑜) ↔ (𝐴𝐵𝐴 ≠ ∅))
 
Theoremondif1 7581 Two ways to say that 𝐴 is a nonzero ordinal number. (Contributed by Mario Carneiro, 21-May-2015.)
(𝐴 ∈ (On ∖ 1𝑜) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
 
Theoremondif2 7582 Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
(𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜𝐴))
 
Theorem2oconcl 7583 Closure of the pair swapping function on 2𝑜. (Contributed by Mario Carneiro, 27-Sep-2015.)
(𝐴 ∈ 2𝑜 → (1𝑜𝐴) ∈ 2𝑜)
 
Theorem0lt1o 7584 Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.)
∅ ∈ 1𝑜
 
Theoremdif20el 7585 An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.)
(𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
 
Theorem0we1 7586 The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.)
∅ We 1𝑜
 
Theorembrwitnlem 7587 Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.)
𝑅 = (𝑂 “ (V ∖ 1𝑜))    &   𝑂 Fn 𝑋       (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)
 
Theoremfnoa 7588 Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
+𝑜 Fn (On × On)
 
Theoremfnom 7589 Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
·𝑜 Fn (On × On)
 
Theoremfnoe 7590 Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.)
𝑜 Fn (On × On)
 
Theoremoav 7591* Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
 
Theoremomv 7592* Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
 
Theoremoe0lem 7593 A helper lemma for oe0 7602 and others. (Contributed by NM, 6-Jan-2005.)
((𝜑𝐴 = ∅) → 𝜓)    &   (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓)       ((𝐴 ∈ On ∧ 𝜑) → 𝜓)
 
Theoremoev 7594* Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) = if(𝐴 = ∅, (1𝑜𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)))
 
Theoremoevn0 7595* Value of ordinal exponentiation at a nonzero mantissa. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
 
Theoremoa0 7596 Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ On → (𝐴 +𝑜 ∅) = 𝐴)
 
Theoremom0 7597 Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
 
Theoremoe0m 7598 Ordinal exponentiation with zero mantissa. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ On → (∅ ↑𝑜 𝐴) = (1𝑜𝐴))
 
Theoremom0x 7599 Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. Unlike om0 7597, this version works whether or not 𝐴 is an ordinal. However, since it is an artifact of our particular function value definition outside the domain, we will not use it in order to be conventional and present it only as a curiosity. (Contributed by NM, 1-Feb-1996.)
(𝐴 ·𝑜 ∅) = ∅
 
Theoremoe0m0 7600 Ordinal exponentiation with zero mantissa and zero exponent. Proposition 8.31 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.)
(∅ ↑𝑜 ∅) = 1𝑜
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >