| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-tag | Structured version Visualization version GIF version | ||
| Description: Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| df-bj-tag | ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | bj-ctag 32962 | . 2 class tag 𝐴 |
| 3 | 1 | bj-csngl 32953 | . . 3 class sngl 𝐴 |
| 4 | c0 3915 | . . . 4 class ∅ | |
| 5 | 4 | csn 4177 | . . 3 class {∅} |
| 6 | 3, 5 | cun 3572 | . 2 class (sngl 𝐴 ∪ {∅}) |
| 7 | 2, 6 | wceq 1483 | 1 wff tag 𝐴 = (sngl 𝐴 ∪ {∅}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bj-tageq 32964 bj-eltag 32965 bj-0eltag 32966 bj-tagss 32968 bj-snglsstag 32969 bj-sngltag 32971 bj-tagex 32975 |
| Copyright terms: Public domain | W3C validator |