Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagss Structured version   Visualization version   GIF version

Theorem bj-tagss 32968
Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-tagss
StepHypRef Expression
1 df-bj-tag 32963 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
2 bj-snglss 32958 . . 3 sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw 4834 . . . 4 ∅ ∈ 𝒫 𝐴
4 0ex 4790 . . . . 5 ∅ ∈ V
54snss 4316 . . . 4 (∅ ∈ 𝒫 𝐴 ↔ {∅} ⊆ 𝒫 𝐴)
63, 5mpbi 220 . . 3 {∅} ⊆ 𝒫 𝐴
72, 6unssi 3788 . 2 (sngl 𝐴 ∪ {∅}) ⊆ 𝒫 𝐴
81, 7eqsstri 3635 1 tag 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  cun 3572  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  sngl bj-csngl 32953  tag bj-ctag 32962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-bj-sngl 32954  df-bj-tag 32963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator