| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cda | Structured version Visualization version GIF version | ||
| Description: Define cardinal number addition. Definition of cardinal sum in [Mendelson] p. 258. See cdaval 8992 for its value and a description. (Contributed by NM, 24-Sep-2004.) |
| Ref | Expression |
|---|---|
| df-cda | ⊢ +𝑐 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 × {∅}) ∪ (𝑦 × {1𝑜}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccda 8989 | . 2 class +𝑐 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cvv 3200 | . . 3 class V | |
| 5 | 2 | cv 1482 | . . . . 5 class 𝑥 |
| 6 | c0 3915 | . . . . . 6 class ∅ | |
| 7 | 6 | csn 4177 | . . . . 5 class {∅} |
| 8 | 5, 7 | cxp 5112 | . . . 4 class (𝑥 × {∅}) |
| 9 | 3 | cv 1482 | . . . . 5 class 𝑦 |
| 10 | c1o 7553 | . . . . . 6 class 1𝑜 | |
| 11 | 10 | csn 4177 | . . . . 5 class {1𝑜} |
| 12 | 9, 11 | cxp 5112 | . . . 4 class (𝑦 × {1𝑜}) |
| 13 | 8, 12 | cun 3572 | . . 3 class ((𝑥 × {∅}) ∪ (𝑦 × {1𝑜})) |
| 14 | 2, 3, 4, 4, 13 | cmpt2 6652 | . 2 class (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 × {∅}) ∪ (𝑦 × {1𝑜}))) |
| 15 | 1, 14 | wceq 1483 | 1 wff +𝑐 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 × {∅}) ∪ (𝑦 × {1𝑜}))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cdafn 8991 cdaval 8992 |
| Copyright terms: Public domain | W3C validator |