![]() |
Metamath
Proof Explorer Theorem List (p. 90 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | alephord3 8901 | Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵))) | ||
Theorem | alephsucdom 8902 | A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) | ||
Theorem | alephsuc2 8903* | An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 8449 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 8766. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | ||
Theorem | alephdom 8904 | Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) | ||
Theorem | alephgeom 8905 | Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | ||
Theorem | alephislim 8906 | Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.) |
⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) | ||
Theorem | aleph11 8907 | The aleph function is one-to-one. (Contributed by NM, 3-Aug-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) = (ℵ‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | alephf1 8908 | The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 8926. (Contributed by Mario Carneiro, 2-Feb-2013.) |
⊢ ℵ:On–1-1→On | ||
Theorem | alephsdom 8909 | If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵))) | ||
Theorem | alephdom2 8910 | A dominated initial ordinal is included. (Contributed by Jeff Hankins, 24-Oct-2009.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ 𝐵)) | ||
Theorem | alephle 8911 | The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 8932, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) | ||
Theorem | cardaleph 8912* | Given any transfinite cardinal number 𝐴, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) | ||
Theorem | cardalephex 8913* | Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) | ||
Theorem | infenaleph 8914* | An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) | ||
Theorem | isinfcard 8915 | Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) | ||
Theorem | iscard3 8916 | Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.) |
⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) | ||
Theorem | cardnum 8917 | Two ways to express the class of all cardinal numbers, which consists of the finite ordinals in ω plus the transfinite alephs. (Contributed by NM, 10-Sep-2004.) |
⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} = (ω ∪ ran ℵ) | ||
Theorem | alephinit 8918* | An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴 ≼ 𝑥 → 𝐴 ⊆ 𝑥))) | ||
Theorem | carduniima 8919 | The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) | ||
Theorem | cardinfima 8920* | If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
⊢ (𝐴 ∈ 𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ ran ℵ)) | ||
Theorem | alephiso 8921 | Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.) |
⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) | ||
Theorem | alephprc 8922 | The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of [TakeutiZaring] p. 90. (Contributed by NM, 11-Nov-2003.) |
⊢ ¬ ran ℵ ∈ V | ||
Theorem | alephsson 8923 | The class of transfinite cardinals (the range of the aleph function) is a subclass of the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
⊢ ran ℵ ⊆ On | ||
Theorem | unialeph 8924 | The union of the class of transfinite cardinals (the range of the aleph function) is the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
⊢ ∪ ran ℵ = On | ||
Theorem | alephsmo 8925 | The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
⊢ Smo ℵ | ||
Theorem | alephf1ALT 8926 | Alternate proof of alephf1 8908. (Contributed by Mario Carneiro, 15-Mar-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℵ:On–1-1→On | ||
Theorem | alephfplem1 8927 | Lemma for alephfp 8931. (Contributed by NM, 6-Nov-2004.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝐻‘∅) ∈ ran ℵ | ||
Theorem | alephfplem2 8928* | Lemma for alephfp 8931. (Contributed by NM, 6-Nov-2004.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) | ||
Theorem | alephfplem3 8929* | Lemma for alephfp 8931. (Contributed by NM, 6-Nov-2004.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) | ||
Theorem | alephfplem4 8930 | Lemma for alephfp 8931. (Contributed by NM, 5-Nov-2004.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ | ||
Theorem | alephfp 8931 | The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 8932 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.) |
⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (ℵ‘∪ (𝐻 “ ω)) = ∪ (𝐻 “ ω) | ||
Theorem | alephfp2 8932 | The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 8931 for an actual example of a fixed point. Compare the inequality alephle 8911 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 | ||
Theorem | alephval3 8933* | An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.) |
⊢ (𝐴 ∈ On → (ℵ‘𝐴) = ∩ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) | ||
Theorem | alephsucpw2 8934 | The power set of an aleph is not strictly dominated by the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 9498 or gchaleph2 9494.) The transposed form alephsucpw 9392 cannot be proven without the AC, and is in fact equivalent to it. (Contributed by Mario Carneiro, 2-Feb-2013.) |
⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) | ||
Theorem | mappwen 8935 | Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜 ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵)) → (𝐴 ↑𝑚 𝐵) ≈ 𝒫 𝐵) | ||
Theorem | finnisoeu 8936* | A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴)) | ||
Theorem | iunfictbso 8937 | Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴) → ∪ 𝐴 ≼ ω) | ||
Syntax | wac 8938 | Wff for an abbreviation of the axiom of choice. |
wff CHOICE | ||
Definition | df-ac 8939* |
The expression CHOICE will be used as a
readable shorthand for any
form of the axiom of choice; all concrete forms are long, cryptic, have
dummy variables, or all three, making it useful to have a short name.
Similar to the Axiom of Choice (first form) of [Enderton] p. 49.
There is a slight problem with taking the exact form of ax-ac 9281 as our definition, because the equivalence to more standard forms (dfac2 8953) requires the Axiom of Regularity, which we often try to avoid. Thus, we take the first of the "textbook forms" as the definition and derive the form of ax-ac 9281 itself as dfac0 8955. (Contributed by Mario Carneiro, 22-Feb-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) | ||
Theorem | aceq1 8940* | Equivalence of two versions of the Axiom of Choice ax-ac 9281. The proof uses neither AC nor the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) | ||
Theorem | aceq0 8941* | Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. The right-hand side is our original ax-ac 9281. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) | ||
Theorem | aceq2 8942* | Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) | ||
Theorem | aceq3lem 8943* | Lemma for dfac3 8944. (Contributed by NM, 2-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) ⇒ ⊢ (∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) | ||
Theorem | dfac3 8944* | Equivalence of two versions of the Axiom of Choice. The left-hand side is defined as the Axiom of Choice (first form) of [Enderton] p. 49. The right-hand side is the Axiom of Choice of [TakeutiZaring] p. 83. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | ||
Theorem | dfac4 8945* | Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
Theorem | dfac5lem1 8946* | Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.) |
⊢ (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑔(𝑔 ∈ 𝑤 ∧ 〈𝑤, 𝑔〉 ∈ 𝑦)) | ||
Theorem | dfac5lem2 8947* | Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ⇒ ⊢ (〈𝑤, 𝑔〉 ∈ ∪ 𝐴 ↔ (𝑤 ∈ ℎ ∧ 𝑔 ∈ 𝑤)) | ||
Theorem | dfac5lem3 8948* | Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ⇒ ⊢ (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ)) | ||
Theorem | dfac5lem4 8949* | Lemma for dfac5 8951. (Contributed by NM, 11-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} & ⊢ 𝐵 = (∪ 𝐴 ∩ 𝑦) & ⊢ (𝜑 ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑦∀𝑧 ∈ 𝐴 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) | ||
Theorem | dfac5lem5 8950* | Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} & ⊢ 𝐵 = (∪ 𝐴 ∩ 𝑦) & ⊢ (𝜑 ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) | ||
Theorem | dfac5 8951* | Equivalence of two versions of the Axiom of Choice. The right-hand side is Theorem 6M(4) of [Enderton] p. 151 and asserts that given a family of mutually disjoint nonempty sets, a set exists containing exactly one member from each set in the family. The proof does not depend on AC. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) | ||
Theorem | dfac2a 8952* | Our Axiom of Choice (in the form of ac3 9284) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2 8953 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → CHOICE) | ||
Theorem | dfac2 8953* | Axiom of Choice (first form) of [Enderton] p. 49 implies of our Axiom of Choice (in the form of ac3 9284). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elirrv 8504 and preleq 8514 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 8952.) TODO: Fix label in comment, and put label changes into list at top of set.mm. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) | ||
Theorem | dfac7 8954* | Equivalence of the Axiom of Choice (first form) of [Enderton] p. 49 and our Axiom of Choice (in the form of ac2 9283). The proof does not depend AC on but does depend on the Axiom of Regularity. (Contributed by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) | ||
Theorem | dfac0 8955* | Equivalence of two versions of the Axiom of Choice. The proof uses the Axiom of Regularity. The right-hand side is our original ax-ac 9281. (Contributed by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) | ||
Theorem | dfac1 8956* | Equivalence of two versions of the Axiom of Choice ax-ac 9281. The proof uses the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) | ||
Theorem | dfac8 8957* | A proof of the equivalency of the Well Ordering Theorem weth 9317 and the Axiom of Choice ac7 9295. (Contributed by Mario Carneiro, 5-Jan-2013.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) | ||
Theorem | dfac9 8958* | Equivalence of the axiom of choice with a statement related to ac9 9305; definition AC3 of [Schechter] p. 139. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (CHOICE ↔ ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅)) | ||
Theorem | dfac10 8959 | Axiom of Choice equivalent: the cardinality function measures every set. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (CHOICE ↔ dom card = V) | ||
Theorem | dfac10c 8960* | Axiom of Choice equivalent: every set is equinumerous to an ordinal. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦 ∈ On 𝑦 ≈ 𝑥) | ||
Theorem | dfac10b 8961 | Axiom of Choice equivalent: every set is equinumerous to an ordinal (quantifier-free short cryptic version alluded to in df-ac 8939). (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ (CHOICE ↔ ( ≈ “ On) = V) | ||
Theorem | acacni 8962 | A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) | ||
Theorem | dfacacn 8963 | A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (CHOICE ↔ ∀𝑥AC 𝑥 = V) | ||
Theorem | dfac13 8964 | The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) | ||
Theorem | dfac12lem1 8965* | Lemma for dfac12 8971. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐹:𝒫 (har‘(𝑅1‘𝐴))–1-1→On) & ⊢ 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = ∪ dom 𝑥, ((suc ∪ ran ∪ ran 𝑥 ·𝑜 (rank‘𝑦)) +𝑜 ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((◡OrdIso( E , ran (𝑥‘∪ dom 𝑥)) ∘ (𝑥‘∪ dom 𝑥)) “ 𝑦)))))) & ⊢ (𝜑 → 𝐶 ∈ On) & ⊢ 𝐻 = (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)) ⇒ ⊢ (𝜑 → (𝐺‘𝐶) = (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·𝑜 (rank‘𝑦)) +𝑜 ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))))) | ||
Theorem | dfac12lem2 8966* | Lemma for dfac12 8971. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐹:𝒫 (har‘(𝑅1‘𝐴))–1-1→On) & ⊢ 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = ∪ dom 𝑥, ((suc ∪ ran ∪ ran 𝑥 ·𝑜 (rank‘𝑦)) +𝑜 ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((◡OrdIso( E , ran (𝑥‘∪ dom 𝑥)) ∘ (𝑥‘∪ dom 𝑥)) “ 𝑦)))))) & ⊢ (𝜑 → 𝐶 ∈ On) & ⊢ 𝐻 = (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On) ⇒ ⊢ (𝜑 → (𝐺‘𝐶):(𝑅1‘𝐶)–1-1→On) | ||
Theorem | dfac12lem3 8967* | Lemma for dfac12 8971. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐹:𝒫 (har‘(𝑅1‘𝐴))–1-1→On) & ⊢ 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = ∪ dom 𝑥, ((suc ∪ ran ∪ ran 𝑥 ·𝑜 (rank‘𝑦)) +𝑜 ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((◡OrdIso( E , ran (𝑥‘∪ dom 𝑥)) ∘ (𝑥‘∪ dom 𝑥)) “ 𝑦)))))) ⇒ ⊢ (𝜑 → (𝑅1‘𝐴) ∈ dom card) | ||
Theorem | dfac12r 8968 | The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 8971 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∪ (𝑅1 “ On) ⊆ dom card) | ||
Theorem | dfac12k 8969* | Equivalence of dfac12 8971 and dfac12a 8970, without using Regularity. (Contributed by Mario Carneiro, 21-May-2015.) |
⊢ (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card) | ||
Theorem | dfac12a 8970 | The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) | ||
Theorem | dfac12 8971 | The axiom of choice holds iff every aleph has a well-orderable powerset. (Contributed by Mario Carneiro, 21-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card) | ||
Theorem | kmlem1 8972* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, 1 => 2. (Contributed by NM, 5-Apr-2004.) |
⊢ (∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 𝜑) → ∃𝑦∀𝑧 ∈ 𝑥 𝜓) → ∀𝑥(∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 𝜑 → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → 𝜓))) | ||
Theorem | kmlem2 8973* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
⊢ (∃𝑦∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) | ||
Theorem | kmlem3 8974* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. The right-hand side is part of the hypothesis of 4. (Contributed by NM, 25-Mar-2004.) |
⊢ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤))) | ||
Theorem | kmlem4 8975* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.) |
⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅) | ||
Theorem | kmlem5 8976* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) | ||
Theorem | kmlem6 8977* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.) |
⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) → ∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) | ||
Theorem | kmlem7 8978* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.) |
⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | ||
Theorem | kmlem8 8979* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004.) |
⊢ ((¬ ∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 → ∃𝑦∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) ↔ (∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 ∨ ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) | ||
Theorem | kmlem9 8980* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) | ||
Theorem | kmlem10 8981* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑) | ||
Theorem | kmlem11 8982* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.) |
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ (𝑧 ∈ 𝑥 → (𝑧 ∩ ∪ 𝐴) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) | ||
Theorem | kmlem12 8983* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 27-Mar-2004.) |
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) | ||
Theorem | kmlem13 8984* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 5-Apr-2004.) |
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ (∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥(¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | ||
Theorem | kmlem14 8985* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
⊢ (𝜑 ↔ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣))) & ⊢ (𝜓 ↔ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))) & ⊢ (𝜒 ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ⇒ ⊢ (∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∃𝑦∀𝑧∃𝑣∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) | ||
Theorem | kmlem15 8986* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
⊢ (𝜑 ↔ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣))) & ⊢ (𝜓 ↔ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))) & ⊢ (𝜒 ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ⇒ ⊢ ((¬ 𝑦 ∈ 𝑥 ∧ 𝜒) ↔ ∀𝑧∃𝑣∀𝑢(¬ 𝑦 ∈ 𝑥 ∧ 𝜓)) | ||
Theorem | kmlem16 8987* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
⊢ (𝜑 ↔ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣))) & ⊢ (𝜓 ↔ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))) & ⊢ (𝜒 ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ⇒ ⊢ ((∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ∨ ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ 𝜒)) ↔ ∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ 𝜑) ∨ (¬ 𝑦 ∈ 𝑥 ∧ 𝜓))) | ||
Theorem | dfackm 8988* | Equivalence of the Axiom of Choice and Maes' AC ackm 9287. The proof consists of lemmas kmlem1 8972 through kmlem16 8987 and this final theorem. AC is not used for the proof. Note: bypassing the first step (i.e. replacing dfac5 8951 with biid 251) establishes the AC equivalence shown by Maes' writeup. The left-hand-side AC shown here was chosen because it is shorter to display. (Contributed by NM, 13-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) |
⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))))) | ||
Syntax | ccda 8989 | Extend class definition to include cardinal number addition. |
class +𝑐 | ||
Definition | df-cda 8990* | Define cardinal number addition. Definition of cardinal sum in [Mendelson] p. 258. See cdaval 8992 for its value and a description. (Contributed by NM, 24-Sep-2004.) |
⊢ +𝑐 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 × {∅}) ∪ (𝑦 × {1𝑜}))) | ||
Theorem | cdafn 8991 | Cardinal number addition is a function. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ +𝑐 Fn (V × V) | ||
Theorem | cdaval 8992 | Value of cardinal addition. Definition of cardinal sum in [Mendelson] p. 258. For cardinal arithmetic, we follow Mendelson. Rather than defining operations restricted to cardinal numbers, we use this disjoint union operation for addition, while Cartesian product and set exponentiation stand in for cardinal multiplication and exponentiation. Equinumerosity and dominance serve the roles of equality and ordering. If we wanted to, we could easily convert our theorems to actual cardinal number operations via carden 9373, carddom 9376, and cardsdom 9377. The advantage of Mendelson's approach is that we can directly use many equinumerosity theorems that we already have available. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | ||
Theorem | uncdadom 8993 | Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) | ||
Theorem | cdaun 8994 | Cardinal addition is equinumerous to union for disjoint sets. (Contributed by NM, 5-Apr-2007.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
Theorem | cdaen 8995 | Cardinal addition of equinumerous sets. Exercise 4.56(b) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 +𝑐 𝐶) ≈ (𝐵 +𝑐 𝐷)) | ||
Theorem | cdaenun 8996 | Cardinal addition is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 +𝑐 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
Theorem | cda1en 8997 | Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 +𝑐 1𝑜) ≈ suc 𝐴) | ||
Theorem | cda1dif 8998 | Adding and subtracting one gives back the original set. Similar to pncan 10287 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ (𝐵 ∈ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {𝐵}) ≈ 𝐴) | ||
Theorem | pm110.643 8999 | 1+1=2 for cardinal number addition, derived from pm54.43 8826 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 8758), but after applying definitions, our theorem is equivalent. The comment for cdaval 8992 explains why we use ≈ instead of =. See pm110.643ALT 9000 for a shorter proof that doesn't use pm54.43 8826. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.) |
⊢ (1𝑜 +𝑐 1𝑜) ≈ 2𝑜 | ||
Theorem | pm110.643ALT 9000 | Alternate proof of pm110.643 8999. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (1𝑜 +𝑐 1𝑜) ≈ 2𝑜 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |